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Abstract

Understanding, measuring, and debugging IP networks, particularly across
administrative domains, is challenging. Compounding the problem are trans-
parent in-path appliances and middleboxes that can be difficult to manage and
sometimes left out-of-date or misconfigured. As a result, packet headers can be
modified in unexpected ways, negatively impacting end-to-end performance.
We discuss the impact of such packet header modifications, present an array of
techniques for their detection, and define strategies to add tamper-evident pro-
tection to our detection techniques. We select a solution for implementation
into the Linux TCP stack and use it to examine real-world Internet paths. We
discover various instances of in-path modifications and extract lessons learned
from them to help drive future design efforts.
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CHAPTER 1:
Introduction

Packet transit in the modern Internet is complicated by a diverse abundance of network
devices that introduce modifications to a packet and its semantics. These modifications are
possible because, aside from a few exceptions that will be discussed later, packet header
control information is rarely encrypted or authenticated [1] and thus not protected as it
traverses the network from one end host to another.

As we will show, packets may experience a variety of changes to their fields while in transit,
both intentional and unintentional. Intentionally performed changes, such as a firewall rule
desired by a network administrator, are an acknowledged fact of life on the Internet. Un-
intentional packet modifications, however, can be the result of misconfigurations or legacy
devices and are an often under-appreciated issue that can have a widespread impact on the
network. The primary motivation of this work is to expose these problematic changes to
critical packet fields which can alter semantics and lead to unintended protocol interactions.

1.1 Middleboxes
Many different types of devices interact with a packet as it traverses the network. Tradi-
tionally, the primary objective of these devices was packet forwarding. It is increasingly
common, however, for packets to encounter devices whose primary task is something other
than just the forwarding or routing of packets. Request for Comments (RFC) 3234 defines
a term for these types of devices, middleboxes, and gives a taxonomy of the various types
that existed at the time of publishing [2].

1.1.1 Types of Middleboxes
Some examples of well-known and commonly deployed middleboxes include: firewalls,
network address translation (NAT) devices, performance-enhancing proxies, and transcoders
that modify image files to reduce their size. Systems such as these are very prevalent on the
network, with each one having the ability to modify packets for its own purposes. Recent
studies have shown that in networks of all sizes, the number of middleboxes is on par with
the number of routers [3].

NAT devices, in particular, are extremely prevalent. Recent statistics from the network
diagnostic tool Netalyzr show that about 90% of its sessions came from behind a NAT de-
vice [4]. They are nearly ubiquitous on home and corporate networks due to the decreasing
availability of globally-routable IPv4 addresses.

Also in use on the Internet are a myriad of other more specialized “security-enhancing”
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devices like sequence number randomizers [5], fingerprint scrubbers [6], active wardens [7,
8], and traffic normalizers [9]. Because these devices sit in the line, they can alter any bits
within the entire packet header. NAT devices, for example, are expected to alter certain
fields such as Internet Protocol (IP) addresses and TCP or User Datagram Protocol (UDP)
port numbers, but nothing stops the same device from changing more than that, such as
sequence numbers and IP or TCP options.

1.2 The Problem
Middleboxes are difficult to manage and maintain. Networks of all sizes employ a diverse
set of middleboxes that serve a variety of purposes. Many are often from various vendors,
usually run on separate physical hardware, and require configuration by a well-trained ad-
ministrator. As a result, they can require a large support staff, which greatly adds to the
already expensive cost of purchasing devices and their licenses [3].

All of these factors contribute to the introduction of misconfigured, nonstandard, or out-
of-date legacy behaviors in middleboxes. In a survey of 57 network administrators, the
majority overwhelmingly cited misconfiguration as the most common cause of middlebox
failure, most likely due to the management and upgrade complexity involved [3].

With their prevalence and how much power they have to alter packets and their semantics,
it is a problem when middleboxes operate incorrectly or make unintended changes. As
we will show in Section 2.1, such changes can result in unexpected protocol interactions
and end-to-end performance issues. Furthermore, even just the threat of encountering such
issues can negatively influence protocol innovation, forcing designers to scale back im-
provements and take overly conservative deployment strategies [10–14]. As we show in
Section 2.1 and confirm in Chapter 7, such end-to-end traversal issues still occur and are a
real problem on the Internet.

The existing solution space for this problem can be broken down into three primary cate-
gories of approaches: prevention, avoidance, or detection. Prevention involves using strong
cryptography to stop middleboxes from tampering with packet headers. Avoidance tries to
fix the middleboxes themselves before issues arise. The final category, detection, includes
solutions that check to see whether any modifications were made to the packet headers in-
flight. Section 2.2 describes examples of related work that fall under each category and the
limitations they have.

In this work, we advocate a strategy of detection. We feel that this strategy is the most
flexible, most cooperative with current middleboxes, and will be the most likely type of
approach to achieve wide adoption, which is the key to any solution.
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1.3 Impact on Relevant Stakeholders
The significance of this work is the impact it could have on our understanding of the global
Internet architecture. Successful adoption of this technology would not only make debug-
ging and troubleshooting easier, but yield new insights about the integrity of packet transit
across a large portion of the network. It would also enable interesting future measurement
studies that could clarify the impact of middleboxes and allow network administrators to
implement new protocols more safely, without alienating a small set of users behind a
faulty middlebox. This could accelerate the deployment of new protocols that enhance
robustness, reliability, or offer new functionality.

We also believe that many incentives exist for adoption of our proposed solution and could
benefit all groups of key Internet stakeholders:

• End users and content providers want to know their traffic is treated fairly by their
transit providers, i.e., network neutrality.
• Large Internet companies want to take advantage of as many protocol extensions as

possible to increase performance, but are hesitant to enable them due to blackholes
and middlebox interference.
• System and network administrators would have access to a new diagnostic tool to

troubleshoot more complex connectivity issues.
• The networking community would be able to draw upon a wealth of new information

for measurement studies to better understand the global Internet.
• Any end host enabled with our detection code could instantly become a cooper-

ating end point in a path integrity test. This would be similar to how ping and
traceroute are used today to enable network tests with a large number of hosts
without requiring prior coordination with the system administrators.

1.4 Document Structure
The remainder of this report is organized as follows:

Chapter 2 discusses related research on middleboxes and the issues they can cause. We
also survey the various existing solutions introduced in Section 1.2 and discuss
their shortcomings.

Chapter 3 builds on the shortcomings we found with other solutions and defines the ar-
chitectural design principles we feel must be achieved in an effective solution.
These goals are later used to evaluate the design alternatives we propose.

Chapter 4 discusses methods for transmitting integrity information and the related design
considerations. We also present the various designs we generated in the pursuit
of finding the best solution.

Chapter 5 considers what can happen when a middlebox attempts to fake the integrity in-
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formation and details various solutions to add protection to the integrity value.
Chapter 6 details our implementation in the Linux kernel.
Chapter 7 presents the results from experiments using our protocol on the Internet.
Chapter 8 concludes our work by summarizing key points and discussing opportunities

for future work.

6



CHAPTER 2:
Background and Related Work

In this chapter, we begin by more closely examining the breadth of disruptions that can
arise from misconfigured middleboxes, going into depth on several selected issues. We
then survey the possible solution space, examining the current state-of-the-art in each of
the three categories of approaches mentioned in Section 1.2. We find that each solution
suffers from some key limitations that negate its efficacy for our problem domain. The
shortcomings we find will be used later to build our architectural requirements in Chapter 3
to define where and how we can improve upon current solutions.

First, we look at network traffic integrity mechanisms in use today and discuss why they
fall short in the context of our problem. We also discuss related work that approaches
middlebox coordination from a different angle by attempting to redesign the middlebox
architecture using elements of software-defined networking. Finally, we take a closer look
at related detection-based solutions. The most viable alternative we found is able to detect
in-path middlebox modifications, but is not integrated into TCP and has several limitations
that we strive to overcome.

2.1 Middlebox Issues
Architectural issues with middleboxes and their unintended consequences are well-documented
[2]. In 2004, Medina et al. detailed several issues caused by unexpected interactions on
the part of a middlebox [15, 16]. Their tests show a mere 41% success rate of Path MTU
Discovery (PMTUD), a network technique to avoid fragmentation by detecting the largest
segment size allowed by a path. ICMP blocking by middleboxes was pinpointed as the
presumable cause of failure for 18% of the servers tested. In addition, middleboxes were
found to disrupt IP options; using a non-standard IP option resulted in failure of over 70%
of connections, with mixed results even for common options. The concern of such behav-
ior is not just that the options were not propagated, but even worse that the entire packet
was dropped at some point along the path, i.e., the “blackhole” problem. The authors also
found that Explicit Congestion Notification (ECN) was a problem area as well, where mid-
dleboxes overwrite flags, causing failures with negotiation and congestion notification. We
discuss ECN further in Section 2.1.1.

Honda et al. used measurements taken by their tool, TCPExposure, to examine how TCP
options are treated by middleboxes [11]. They found instances of TCP options, both known
and unknown, being stripped from packets, sequence numbers being translated, and even
some port-specific behaviors where options were stripped on a random high port, but not
on port 80. Middleboxes along some paths were also found to be very fragile dealing with
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Bits Code Point Meaning
00 Non-ECT Not ECN-capable
10

ECT ECN-capable, no congestion
01
11 CE Congestion encountered

Table 2.1: ECN code points in the IP header

out-of-order data. Ultimately, they found that at least 25% of the paths seen in the study
had a middlebox whose behavior depended on the transport-layer (e.g., TCP) of packets
that passed through the middlebox. Not only is this interference detrimental to the validity
of the protocol interactions, but it is also difficult to diagnose and makes troubleshooting a
complex endeavor.

2.1.1 ECN
ECN [17] is an interesting TCP/IP enhancement worth closer examination as experiences
with ECN distill the essence of the middlebox problem. Without ECN, a TCP sender must
rely solely on timeouts or lost segments in order to infer the congestion state of a path.
With ECN, however, routers assist in congestion control by marking packets as local buffer
pressure increases, thereby signaling the sender to reduce her rate before the router will be
forced to drop packets.

The ECN protocol relies on a delicate series of cross-layer interactions to function properly:
routers must be able to mark packets (at the IP layer), the receiver must echo the congestion
mark back to the sender (at the transport layer), and the sender must properly acknowledge
and slow down. There are many opportunities for this series of interactions to be disrupted.
Not only must the three parties involved (sender, receiver, and routers) properly follow the
protocol, but any middleboxes along the path must retain all of the ECN semantics.

At the bit level, the ECN semantics are transmitted via several fields within the IP and TCP
headers. The congestion mark is made by setting a pair of bits in the IP header, shown
in the middle of the top row of Figure 2.1. The two bit field can take on three different
meanings as shown in Table 2.1. When a router wants to mark congestion, and the packet
is ECN capable, the router changes the ECN-Capable Transport (ECT) code point to the
Congestion Encountered (CE) code point. A receiver that gets a packet with the CE code
point set knows that congestion occurred and must tell the sender to slow down. This is
done by setting the ECN Echo (ECE) flag in the TCP header of returning acknowledgment
packets until the sender gets the message, slows down, and confirms via the Congestion
Window Reduced (CWR) flag of the TCP header. Both flags are shown on the left side of
the fourth row in Figure 2.2.
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Figure 2.2: Structure of a TCP header

2.1.2 Issues with legacy devices and ECN
It is important to note that all of the bits occupied by these ECN flags had other meanings
before ECN was standardized in 2001. The DiffServ and ECN code points fields shown in
the top row of Figure 2.1 were originally a single byte known as the type of service (TOS)
field. The TCP flag bits shown on the left side of the fourth row of Figure 2.2 were listed
as reserved and expected to always be zero. An experimental enhancement to ECN adds
semantics to another bit in the TCP header, the nonce sum (NS) bit [18]. Each of these
field redefinitions is an opportunity for a legacy middlebox to misinterpret packet header
bits and potentially disrupt the ECN interactions.

While the study by Medina et al. found issues with ECN-blocking middleboxes, it was
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performed in 2004 when ECN was fairly new without widespread implementation. 93% of
the servers they tested did not even support ECN. Seven years later, in 2011, Bauer et al.
revisited ECN readiness in Internet hosts and found that even though many servers were
capable of using ECN, a non-trivial number of problems with middleboxes disrupting the
ECN fields still existed [12]. The most common problem involved treating the 6-bit Dif-
ferentiated Services Code Point (DSCP) field and the 2-bit ECN field as the old 8-bit TOS
field. Attempts to overwrite or clear the DSCP field resulted in accidentally overwriting the
entire byte and destroying the ECN information.

Such overwriting can also impact connection performance. For instance, if any of the con-
gestion signaling bits are inadvertently set when there was not any congestion to begin with,
performance will suffer. As stated before in Section 2.1.1, ECN relies on a delicate series
of cross-layer interactions to properly communicate when congestion was experienced and
when that communication was acted upon. Any spurious overwriting of its field can corrupt
the state between the two endpoints, confusing ECN and impacting performance.

2.1.3 ISN translation and SACK
As another example of a protocol being manipulated by a middlebox, some firewalls imple-
ment TCP initial sequence number (ISN) randomization to protect hosts behind the device
that may be using predictable initial values. Sequence numbers must therefore be trans-
lated during the life of the TCP connection. However, in many cases this feature does
not properly translate selective acknowledgment (SACK) values and pass the untranslated
SACK blocks with translated ISNs. Enabling this feature harms both performance and
overall throughput. Documentation from one leading vendor now recommends disabling
the module in their firewall [5].

Problems such as a mismatch between SACK blocks and overwritten sequence numbers
can be very difficult and time consuming to identify and fix. We encountered this very
issue ourselves on our own organization’s network. In order to diagnose it, we required
a cooperating endpoint to perform low-level comparison between traffic sent and traffic
received. A problem such as this is very subtle and requires the keen eye of a trained
administrator to recognize and understand the issue.

Instances of SACK mismatches due to middleboxes are found in the academic literature
as well. Honda et al. gives a general warning about sequence numbers being included
in various TCP options due to the fact that they are often inconsistently overwritten by
middleboxes [11]. Honda also notes that this issue could even become worse if any of the
various proposals to expand the TCP options space [19] are ever adopted. Extending the
options across multiple packets could make copies of the sequence numbers even harder for
a middlebox to locate and translate. Hesmans et al. further discuss the issues with SACK
and suggest a change to how out-of-window SACK blocks are interpreted [20].
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Protocol
Innovation

Reason
for Disruption

Issue Impact Study

Path MTU
Discovery

Legacy, Policy ICMP blocking Degraded
performance

[16, 21]

IP Options Legacy,
Performance

Blocking, option
stripping

Blackholes, poor
extensibility

[10, 16]

TCP Options Legacy, Policy Option stripping Poor
extensibility

[11]

ECN Legacy,
Misconfiguration

Blackholes, mark
concealment,
improper congestion
signals

Degraded
performance,
attack
congestion
control

[12]

SACK Misconfiguration Out-of-context
SACK numbers

Degraded
performance

[11, 20]

Table 2.2: Examples of Middlebox Interference

2.1.4 Negative impact on overall network security
As seen with ECN and other extensions, misconfigurations and legacy behavior in middle-
boxes can stifle innovations that were designed to add features and make the network more
robust. Table 2.2 summarizes some of these examples.

In the case of ECN, for example, it was designed to enhance congestion control in TCP/IP.
By integrating state from routers, the network can provide added functionality such as
early congestion detection to increase network efficiency and fairness. When middleboxes
inadvertently disrupt the interactions of the ECN fields, those gains can be lost and the
potential is there to completely break congestion control itself. On paths where congestion
marks or echoes are always falsely set, performance will be severely degraded. This can
function almost like a Denial of Service (DoS) attack.

In general, the Internet Engineering Task Force (IETF) and various network administrators,
especially those with large user bases, are far more reluctant to enable these new extensions
when unexpected protocol manipulations are taking place and causing connections to fail.
With respect to ECN in particular, the feedback we got from one large content provider was
that “we want to enable ECN, but do not because enabling ECN may adversely affect some
of our users.” [22]

This reluctance induced by a small number of bad paths can negatively impact the overall
security and stability of the Internet as our usage and needs evolve, bringing with them
the need for new extensions to core network protocols. In this sense, middleboxes and
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Section Name Description Examples
2.3 Prevention Stop middleboxes from tampering IPsec, tcpcrypt
2.4 Avoidance Fix middleboxes before issues occur SIMPLE, APLOMB
2.5 Detection Detect and potentially fix or workaround checksums, Tracebox

Table 2.3: Categorized breakdown of the current solution space

other systems that cause these problems are inadvertently adversarial. This differs from
the typical adversarial model in that while a system is not intentionally malicious, it can
and does cause unforeseen problems through its modifications of packet fields.

2.2 Solution Space
We surveyed the current solution space for this problem and found that the various al-
ternatives can be categorized under one of three main styles of approaches: prevention,
avoidance, or detection. A summary of our three categories along with pointers to their
corresponding sections is shown in Table 2.3. Prevention involves using strong cryptogra-
phy to stop middleboxes from tampering with packet headers. Avoidance tries to fix the
middleboxes themselves before issues arise. The final category, detection, includes solu-
tions that check to see whether any modifications were made to the packet headers in-flight.

2.3 Prevention
A great deal of prior network research has focused on protection in the presence of a mo-
tivated attacker with the means to arbitrarily inject or modify packets [23]. This has led to
the development of several protocols designed to offer protection from strong adversaries
capable of packet modification and injection. Given the strength of adversary in their secu-
rity models, many of these solutions are often stronger than necessary for our problem, but
they can be used to prevent packet header modifications by a middlebox.

2.3.1 Strong cryptography
Internet Protocol Security (IPsec) is a suite of security enhancement protocols that operate
at the IP layer [24]. The technology guarantees connectionless integrity and data origin au-
thentication of packets through the use of strong cryptography. One of the more noteworthy
components of the suite is the Authentication Header (AH) [25]. The AH is used to ensure
the integrity of a packet header and its payload by protecting a collection of fields defined
as immutable. It acts as an additional layer on top of IP, so all systems along a path must
be able to support it. Drawbacks when applied to our problem include: low adoption, poor
interoperability, and lack of a effective and trustful key exchange mechanism. Furthermore,
IPsec could not be applied to general Internet paths, i.e., between a user at a coffee shop
and each of the servers of websites they may choose to visit.
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The addition of message authentication codes (MACs) to TCP packets for authentication
and integrity was first implemented by the TCP MD5 Signature option standardized in
RFC 2385 [26]. The standard specifies for the inclusion of a 16-byte MD5 digest in the
options space of every TCP packet of a connection. The motivation for this standard was
to secure long-lived flows that eventually wrapped sequence numbers, allowing for easy
packet injection attacks. It mostly applies to Border Gateway Protocol (BGP) connections
between BGP peering routers and requires that keys be established through a manual initial
setup or some other out-of-band mechanism.

The TCP MD5 standard later evolved into, and was obsoleted by, the more generalized
TCP Authentication Option (TCP-AO) described in RFC 5925 [27]. TCP-AO enhances
the strength and flexibility of the MACs over that of TCP MD5 by allowing for the use
of stronger algorithms. However, it still requires that keys and certain session parameters,
e.g., which MAC algorithm to use and whether TCP options are covered, be established
manually or by an out-of-band mechanism. It is still mainly used for the same purpose–
long-lived BGP connections.

Secure Sockets Layer (SSL), and later Transport Layer Security (TLS), use public key
cryptography to authenticate one application to another and establish a session key for data
encryption [28]. It operates above TCP, but can be used to encrypt traffic from a variety
of applications. The cryptography is strong enough to challenge a motivated and capable
adversary and most successful attacks rely on some indirect attack to the encryption, like a
man-in-the-middle attack. Since it operates above TCP, it does not protect the IP and TCP
packet header fields as they traverse the network, only the application-layer message. This
is a major reason that it cannot be applied to this problem, but there are also issues with key
management, establishing chains of trust within TCP where they are less easily updated,
and computationally expensive public key cryptography.

2.3.2 Opportunistic encryption
Various issues with key distribution and infrastructure have also led to various opportunistic
approaches to encryption. With opportunistic approaches, the authentication requirements
are weakened meaning that establishing an encrypted session is easy, but no guarantee is
made that it is the correct party instead of some man-in-the-middle.

Langley proposes widespread encryption of Internet traffic in order to limit trivial eaves-
dropping on public networks and click stream monitoring by unfriendly ISPs [29]. The
suggested strategy is to cram a Diffie-Hellman exchange into the TCP options space to
bootstrap a session key.

Better-than-nothing-security (BTNS) is an unauthenticated mode of IPsec [30]. BTNS uses
self-signed keys to avoid the step of having to verify identities. Due to its easy vulnerabil-
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ity to man-in-the-middle attacks, the authors recommend combining it with a higher-level
authentication mechanism that cooperates with IPsec.

Tcpcrypt is an extension to TCP that was released in 2010 to perform opportunistic encryp-
tion of TCP connections [31]. The protocol defines new key exchange primitives called
CRYPT options for the TCP option space that enable encryption keys to be negotiated di-
rectly within TCP. Once a shared session key is negotiated, all information in the headers
and the data itself is encrypted and a keyed MAC is used to ensure integrity.

2.3.3 Limitations and Drawbacks
Interoperability
Many of these protocols that provide strong security guarantees share a common theme:
strategies that require the network to understand a new protocol or extension yield low
rates of adoption. Tcpcrypt, at least, is interoperable due to its use of the options space.
If a system does not support Tcpcrypt, it simply ignores the option. A problem with this
approach, however, is that options may be dropped or mishandled by any system in-line.
This would be an excellent place for our approach to complement Tcpcrypt, as an endpoint
wanting to use encryption could ascertain which, if any, of its options were being modified
or dropped.

Complexity and overhead
Solutions developed for the strong adversary can certainly be applied to counter miscon-
figured middleboxes, but due to the security model used in the design, they employ more
complexity and overhead than necessary and suffer from compatibility limitations that keep
them from being widely used.

Middlebox cooperation
These tamper-prevention solutions are also uncooperative with good middleboxes. Net-
work administrators need to still be able to enforce their corporate policies and, as such, a
solution that leaves control information readable would gain much wider acceptance. We
believe that implementing a solution that simply adds integrity information to packets rather
than complete header encryption would allow for a higher level of interoperability and ac-
ceptance. We maintain that interoperability with current network devices could be achieved
while still being able to successfully detect modifications and improve performance in the
presence of disruptive middleboxes.

2.4 Avoidance
Recently, the research community has paid significant attention to various means of explic-
itly accommodating middleboxes and thoughtful redesigns of middlebox architectures. The
community is well-aware of network administrators’ increasing reliance on middleboxes in
their networks [32], a market estimated to reach more than $10B by 2016 [33]. This figure
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alone is evidence that middleboxes are here to stay and of the value that they provide to
networks and their customers.

An early proposal by Walfish et al. from 2004 introduced a new architecture that gives all
entities globally unique identifiers in a flat namespace while allowing for explicit interme-
diate packet processing [34]. This ambitious proposal was never used by the community,
however.

In the time since, vendors of WAN optimizers have also recognized the problem of mid-
dlebox cooperation in traffic modifications and have begun adding their own TCP options,
e.g., the TCP Middlebox Option, that request voluntary detection of other middleboxes
along a path [35]. The option only helps specific devices from certain vendors that support
it; legacy devices will not only not support it but will likely strip it as well. The option also
has no end-to-end meaning and is commonly removed from a packet before it reaches its
destination.

2.4.1 Software-defined middleboxes
Beginning in 2011, many in the community began to advocate for the application of prin-
ciples from software-defined networking (SDN) to middlebox architectures [14, 36]. The
belief is that ideas and practices from the field of SDN have the potential to reduce the
sprawl of standalone, non-cohesive middleboxes and unify control over middlebox op-
erations. Since then, a variety of solutions employing these principles have been devel-
oped [3, 37–40].

xOMB (pronounced “zombie”) [37] is a modular software-defined middlebox architecture
that utilizes commodity hardware and operating systems to implement a middleboxes ser-
vices framework. While debugging the modules is easier than a standalone middlebox,
the framework does not implement any checks for packet modification correctness, so hav-
ing correctly operating and up-to-date xOMB middleboxes still depends on the skill and
attention of the local network administrators.

CoMb [39] is a top-down redesign of middlebox infrastructure that seeks to develop a more
open and extensible middlebox platform that will allow for the consolidation of the mid-
dleboxes on a network, reducing device sprawl. With a minimal performance overhead,
CoMb reduces the number of different devices and different platforms by consolidating
middlebox functionality within a single logical controller that can be more centrally man-
aged. A prototype built using the Click modular router [41] showed benefits to the cost of
provisioning a new middlebox and reducing the maximum load across the network as the
middlebox deployment is adjusted to changing traffic workloads.

SIMPLE (Software-defIned Middlebox PoLicy Enforcement) [40] is an effort to restruc-
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ture middlebox processing within the network. Designed to work within the constraints
of pre-existing middleboxes and SDN interfaces, SIMPLE requires no changes to a net-
work’s current middlebox deployment—only configuration of SDN-enabled switches are
required. SIMPLE uses a controller made up of three key modules (ResMgr, DynHan-
dler, and RuleGen) to apply a high-level middlebox policy to a network. Middleboxes are
treated like non-adversarial blackboxes and rules for their input-output behaviors are auto-
matically learned by the controller. The authors achieve close to 95% accuracy using their
protocol-agnostic approach. SIMPLE’s primary benefits are to deployment flexibility and
load-balancing efforts. For example, they were able to achieve the same maximum load
benefits as CoMB without having to modify or consolidate the middleboxes.

Outsourcing middleboxes
Jingling [38] is a prototype outsourcing architecture where the network forwards data out
to external “Feature Providers” that can dynamically adjust to changing traffic loads. The
feature providers apply equivalent middlebox functionality to the network’s traffic so that
the network can eliminate their own local middleboxes, thereby reducing cost and man-
agement complexity. This technique allows consolidation of middleboxes from multiple
networks under one authority than can theoretically do a better job of configuring and up-
dating the middlebox deployment. The relation to our problem is that this strategy could
help eliminate many of the issues we believe we need to address, depending on deployment.

APLOMB [3] is a service to outsource certain types of middlebox processing to the cloud
for ease of management. An APLOMB gateway device is installed so that it is logically
co-located with an enterprise’s gateway router and replaces all of that enterprise’s mid-
dleboxes. The APLOMB gateway securely tunnels all applicable traffic out to a selected
datacenter cloud presence where the middlebox processing is applied to the traffic. An
effort is made to reduce the latency and bandwidth inflation penalties involved while still
achieving the equivalent functionality of a traditional middlebox.

2.4.2 Ineffectuality
While the schemes presented in this section are laudable, they depend on deployment and
use. The authors of SIMPLE even noted in their review of prior work that all of these
schemes exhibit significant barriers to adoption and the incentive just is not there for a
network to overhaul its entire middlebox deployment. This is the reason they tailored their
design to work within the constraints of legacy middleboxes and existing SDN interfaces—
to reduce the impact of adoption and make for easier deployment.

Even if wider deployment is achieved, there is still no guarantee with any of these schemes
that the problems mentioned in Section 2.1 would be fully eliminated. Each of these
schemes only makes debugging easier by consolidating middleboxes where they can be
more easily managed than traditional standalone middleboxes with closed interfaces. The

16



frameworks themselves do not implement any validation for protocol correctness on packet
modifications, so misconfigurations and non-standard behaviors will still be possible.

We believe that there is an even more fundamental inhibitor to the efficacy of these schemes
in solving our problem: incentives and (lack of) policy. All of these software-defined
management approaches are confined to single administrative domains—domains which
may or may not have the incentive or policy to convert its middlebox deployment to a
SDN-based approach. Therefore, TCPs in the wild must still contend with a wide variety
of middleboxes. We believe that even if many subnetworks begin to adopt and implement
one or more of these schemes, and even implement a validity checker on top of them, there
is still great value in an end-to-end solution that will work over all paths, particularly ones
with legacy middlebox deployments.

2.5 Detection
The networking community has paid a great deal of attention to detecting modifications
to packet headers, but traditionally the problem has only been simple transmission errors.
More recently, a greater amount of attention has been paid to the types of modifications
introduced by middleboxes.

2.5.1 Simple checksums
Protection against transmission errors was considered during the design of the Internet
protocol suite and is built into the stack via various link-layer mechanisms and network
and transport layer checksums.

Two of the most commonly used link-layer protocols both employ a cyclic redundancy
check (CRC) to detect corrupted frames: Institute of Electrical and Electronics Engi-
neers (IEEE) 802.3 (Ethernet) [42] and IEEE 802.11 (WiFi) [43]. Also, not only does
the 802.11 protocol family include a check sequence in each frame, but acknowledg-
ment (ACK) frames are used to confirm a receiver’s proper receipt of a frame. The absence
of one after a certain period of time is the signal for the other end to retransmit [43]. These
checks can detect modifications on a single link, but they have no end-to-end significance.

The IP, TCP, and UDP protocols all include a checksum as well that is 16-bits in length.
The Internet checksum algorithm that is used is weaker than a CRC, but can be efficiently
implemented with very fast binary operations. The algorithm computes a one’s complement
sum of 16-bit chunks of data that are to be included in the checksum [44]. The IP checksum
only covers the IP header, while the TCP and UDP checksums cover a pseudo-header that
includes some IP header fields, the TCP/UDP header fields, and the packet data.

The IP checksum does not apply well to the solution we seek because it does not cover any
transport layer fields. Furthermore, IP checksums are not end-to-end as they cover fields
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that change in transit such as the time-to-live (TTL) field. This fact forces the checksum to
be rewritten at each hop, meaning that errors occurring within those intermediate systems,
the middleboxes that introduce the errors, will not be detected. Another issue is that IPv6,
the anticipated eventual replacement for IPv4, does not even include a checksum.

Transport-layer checksums do have end-to-end significance, but it is conditional upon
transport-layer fields not needing to be modified by a middlebox. Since a correct checksum
is required for an endpoint to accept a segment, middleboxes must recompute the checksum
anytime they make a change. There is then no way for either endpoint to know whether the
checksum received is the same as the original checksum. There is also no way for a sender
to know if the received checksum was even correct, let alone the same as the original.

Stone and Partridge note this deficiency of a feedback mechanism and suggest the addi-
tion of a new Internet Control Message Protocol (ICMP) parameter to alert the sender of
a failed checksum [45]. A problem with this out-of-band method is the reliance on the
availability of a secondary communications channel, ICMP, which is commonly blocked
by middleboxes as noted in Section 2.1. Relying on ICMP may therefore negate the ability
to communicate integrity, especially on those networks and paths most likely to modify
packets and fail integrity.

Another problem with checksums in general is the lack of granularity down to individual
header fields. All of the checksums discussed in this section only provide a binary answer
to whether the header as a whole has been modified. A change in any single field will
cause the whole checksum to fail to match, which will not give a TCP the full information
it needs to reason about the correctness of a path.

2.5.2 Application layer solutions
Some solutions also exist at the application layer: Switzerland [46] by the Electronic
Frontier Foundation (EFF) and Netalyzr [4] by the International Computer Science Insti-
tute (ICSI). Both of these solutions are application-layer approaches to check if packets are
being altered by middleboxes and were primarily developed as network neutrality analysis
tools.

Switzerland works by comparing packets sent against packets received at the other end
by cataloging mini-hashes on a third-party server. This approach can be used to detect
in-network modifications in a similar fashion to the proposed TCP-based integrity checks,
however it is not integrated into TCP, requires availability of a third-party, and is not very
widely used.

Netalyzr is a Java-based applet that performs a multitude of checks between the Java client
and a set of back-end servers to spot specific modifications to traffic and aid in network
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diagnostics. Its primary drawback for our specific problem is that the Java security restric-
tions severely limit the lower-level networking tasks that can be performed. For example,
they cannot view sent or received TCP sequence numbers at the client within the limits of
their implementation.

A key limiting factor to both of these options is that both ends of a connection must be
running the program, which leads to low rates of adoption. This also means that only
certain paths, such as the one between a host and the Netalyzr servers, can be tested for
modifications. We believe that by extending down into the network stack, a TCP-based
technique could lead to more pervasive adoption and the ability to test for modifications
with any system on the Internet. This would also have a large impact on the Internet
measurement community, as any end host could be considered a cooperating endpoint for
testing.

2.5.3 Tracebox
Tracebox [47] is a tool that can detect in-path packet header modifications under certain
conditions. It is marketed as an extension to traceroute [48] that works by sending TTL-
limited TCP probes and examining ICMP quotations from the ICMP TTL-exceeded mes-
sages that come back when the packet expires.

The RFC that defines the ICMP protocol says that TTL-exceeded messages should include
a quote of the IP header and the first 8 bytes of the IP payload of the packet when it ex-
pired [49] (28 bytes in total). This allows the sender of the TTL-limited packet to obtain
feedback and get a view of the packet’s state along a path. For TCP packets, observing only
the first 8 bytes of the IP payload implies visibility into only the sequence and acknowledg-
ment numbers. This makes it impossible to spot changes to other fields of the TCP header,
and in particular the important options space.

The creators of Tracebox noticed that RFC 1812 [50] recommends a new quoting behavior
for ICMP TTL-exceeded messages. The new recommended behavior is to quote as much
of the expired IP packet as possible back to the sender. This allows the sender of the packet
to observe packet headers for each TTL-exceeded message and find differences from how
the packet was originated. The authors found that many newer routers actually implement
this RFC 1812 behavior and wrote Tracebox as a means of automating the differencing of
the IP and TCP headers.

The benefits of the methodology used by Tracebox are that information is learned not only
about what fields were changed, but also the values that they were changed to and also
where along the path the change occurred. Determining which hop along a path induced a
modification is going to be difficult for any purely end-to-end-centric strategy. There are
also fewer restrictions on which types of packets can be checked; use of the tool is not
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limited to synchronize (SYN) packets as any packet can have its TTL lowered. Another
positive of the methodology is that so-called “full-quote” routers, i.e., routers that follow
the quoting behavior recommended by RFC 1812, are becoming more and more common
on the Internet. In a small measurement study using 72 PlanetLab nodes, they found that
80% of the 360k paths examined contained at least one full-quote router.

While Tracebox is useful, it does have certain limitations. For one, Tracebox assumes
a completely cooperative environment. Routers have to be trusted to properly quote the
packet, not tamper with any other ICMP TTL-exceeded messages being forwarded through
them, and network policy restrictions have to allow the ICMP messages to make it back to
the sender. As seen with Path MTU Discovery (PMTUD), neither an open policy for ICMP
nor even being properly configured to forward ICMP can be taken for granted [16, 21].
Furthermore, if a client is stuck using an unfriendly Internet Service Provider (ISP), it is
trivial for that provider to limit the effectiveness of the technique or induce false readings.
Other issues include lack of visibility to changes occurring in the penultimate hop (because
the final hop does not expire and quote the packet), and a reduction in location accuracy as
fewer hops along the path provide quotes.

2.5.4 Common Limitations
A common issue among detection-based techniques is that they do not work with TCP
so that it would be able to dynamically adapt to middlebox behaviors. Checksums are
recognized by TCP, but do not provide the type of information we need. Application-layer
or out-of- band solutions are not integrated with TCP and do not have a way to provide
the information to TCP. Furthermore, any attempt to implement this bridge would only
result in a partial solution: the reliance on availability of an application or out-of-band
mechanism severely restricts the number of paths for which TCP would have the additional
information. In order to be fully cooperative with middleboxes, TCP must have information
about changes to packet headers so that it can reason about protocol correctness on its own
and adjust its behavior to best match the header modification conditions along a path.
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CHAPTER 3:
Requirements

3.1 A TCP-based Integrity Check
In order to solve our problem as described in Section 1.2, we propose the development
of an in-band TCP-based integrity check to detect packet header modifications that occur
along a path. The detection solution should endow a pair of endpoints with the ability
for each to determine whether their packet headers were modified in transit. Our solution
should be incrementally deployable and require no support from transit devices to ensure
interoperability.

Through this work, we aim to address an important class of problems due to misconfigured,
non-standards conforming, or legacy in-path network elements and endow endpoints with
the necessary awareness so they can take some appropriate action, such as disabling an
incompatible option or extension.

3.1.1 Security model
In our security model, we operate under the assumption that in-path network elements
are not actively malicious. In other words, we shall make no guarantees of protection
from strong adversaries and the range of attacks they pose, e.g., man-in-the-middle attacks,
cryptanalysis, or side-channel attacks. We also do not strive to provide the endpoints with
a means of confidentiality from these devices. Not only would the provision of these guar-
antees further constrain our solution space, but as we stated in Section 2.3.3, would make
our solution less cooperative with good middleboxes and hurt our likelihood of achieving
wide deployment and acceptance within the community.

Therefore, we assume the presence of an inadvertent adversary, a network element some-
where along a path that is not actively malicious but is inadvertently corrupting critical
packet semantics. By using this adversarial model, we hope to achieve more desirable
interoperability properties in our solution, namely greater flexibility and incremental de-
ployability. As we showed in Section 2.2, traits such as these are typically sacrificed when
strong cryptography is needed. Striking a balance here is often very difficult but we believe
our tailored security model will allow our solution to excel in this problem space.

3.2 Design Requirements
Upon surveying the solution space and the current state-of-the-art, we find many limitations
with each possible solution that we hope to overcome in our design. In order to capture
these limitations and show how we would like to advance the solutions space, we define
the following set of design requirements:
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• In-band: The solution should utilize the same communications channel as the traffic
being measured. Many paths block out-of-band traffic, e.g., ICMP, or treat it differ-
ently. Having both the detection and feedback mechanisms in-band will maximize
our detection rate.
• Minimal overhead: The design should be efficient and lightweight, resulting in a

limited amount of overhead in terms of computation, communication, and round trip
times (RTTs).
• Symmetric feedback: It is important that hosts at each end of a connection know

whether and how their packets were modified in flight.
• Incrementally deployable: The solution should be incrementally deployable and

not require updates to in-network elements. The design should also not interfere
with end-hosts that have not yet been upgraded, i.e., if a connection completes when
neither end is using our solution, it should still do so if either or both ends are using
our solution.
• Improves TCP: The design should endow endpoints with the necessary awareness

so that they can take some appropriate action, such as disabling a non-compatible
option or extension in order to improve performance. To maximize utility, it should
be easily integrated into host protocol stacks.
• Middlebox cooperative: The solution should not impede good middleboxes from

making expected and desired changes to packet headers.
• End-to-end: Paths exhibiting modifications are often the same paths most likely to

block or strip any new diagnostic functionality. The diagnostic should be properly
communicated end-to-end.
• Granular: Endpoints should be able to determine which packet header fields were

changed.

One key to developing a novel solution that improves upon those currently available is the
fresh point-of-view provided by our security model. Much of the prior network research has
focused on the edges of the spectrum: protecting integrity from either transmission errors
or from strong adversaries. When operating under the model of the inadvertent adversary,
the solutions developed by those works are either too weak to be useful or make too many
sacrifices in pursuit of strong cryptographic assurances. Our approach admits new possible
solutions that have the advantage of interoperability with current devices, while still being
able to reliably detect common middlebox-induced modifications.

3.3 Comparison with Solution Space
Before explaining our resulting designs, we place our solution in the context of the in-
tegrity and middlebox cooperation schemes described in Section 2.2. Table 3.1 describes
the degree to which these relevant prior works meet the corresponding design objective.
Checksums are featured in the table due to their widespread use within the current proto-
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cols. The other three items in the table were chosen as the best exemplar from each of the
three groupings under which we categorized the solutions space.

Scheme In-band Minimal
overhead

Symm.
feedback

Incrm.
depl.

Impr.
TCP

Mdl.
coop.

End-
to-end

Granu-
lar

Checksums
Tcpcrypt
Tracebox
SIMPLE

Table 3.1: Summary of Related Work

In Table 3.1, Harvey Balls are used to represent the degree to which each integrity or
middlebox cooperation scheme meets each of our design criteria. A full ball, , means the
scheme fully met that criterion. An empty ball, , means that the scheme failed to meet
that criterion. Other levels imply partial meeting of the criterion with possible caveats. The
following lists explain the reasoning behind each decision:

Checksums:

• In-band: They are carried within both TCP and IP.
• Minimal overhead: The algorithm is lightweight, and only requires extra transmis-

sions when it fails to match.
• Symmetric feedback: There is no feedback mechanism.
• Incrementally deployable: They are already deployed and boxes understand them.
• Improves TCP: Does not help improve TCP under the presence of disruptive packet

header modifications.
• Middlebox cooperative: Middleboxes can make any changes as long as they recom-

pute the checksum.
• End-to-end: Must be overwritten if any packet header modifications are made.
• Granular: No granularity to individual fields.

Tcpcrypt:

• In-band: Operates fully within TCP.
• Minimal overhead: Encrypts opportunistically but uses strong crypto and uses a

large portion of the options space.
• Symmetric feedback: Communicates through TCP options, but fails to give status

in certain situations.
• Incrementally deployable: They are already deployed and boxes understand them.
• Improves TCP: Prevents changes, but cannot help two endpoints optimize parame-

ters for a disruptive path.
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• Middlebox cooperative: Middleboxes cannot change packet headers once the con-
nection is encrypted.
• End-to-end: Will not work on all paths because it is susceptible to having its options

stripped.
• Granular: No granularity to individual fields.

Tracebox:

• In-band: Relies heavily on ICMP messages.
• Minimal overhead: Requires successively fractional RTTs similar to traceroute.
• Symmetric feedback: Host being probed does not learn any information.
• Incrementally deployable: For full functionality, routers need to be upgraded to

support RFC 1812-style packet quoting.
• Improves TCP: Does not give any information to the TCP stack.
• Middlebox cooperative: Middleboxes can still make any changes, but only checks

one path.
• End-to-end: Cannot determine modifications made by penultimate hop.
• Granular: Gives granularity when router quotes full length of headers.

SIMPLE:

• In-band: Requires SDN infrastructure
• Minimal overhead: Requires testing for correctness of protocol behavior.
• Symmetric feedback: Information is retained by the network operator.
• Incrementally deployable: All middleboxes along a path must be upgraded in order

to realize benefits.
• Improves TCP: Correctness-testing in the SIMPLE architecture would help avoid

problems.
• Middlebox cooperative: Uses dynamic learning module to work with any middle-

boxes.
• End-to-end: Has no effect on middleboxes outside the owner’s administrative do-

main.
• Granular: Learns individual field modifications.

In the context of these existing and proposed integrity and middlebox cooperation schemes,
we find that our design meets our objectives and represents a unique point in the design
space. In the following chapters, we describe detection schemes that will fully meet each
of the above design criteria.
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CHAPTER 4:
Transmitting Integrity

In order to provide end hosts with the power to detect in-path modifications to their traffic,
we need to address the fundamental problem of how to communicate an integrity check
of the packet header fields and any related status information. In Section 4.1, we examine
various methods and analyze the extent to which each satisfies the requirements listed in
Chapter 3. After settling on a strategy that is better suited to the problem than the others, we
analyze the design considerations under that strategy in Section 4.2. Finally, we enumerate
an array of potential design alternatives, along with their pros and cons, in the variants
described in Sections 4.3 through 4.8.

4.1 Methods for transmitting integrity
4.1.1 Application layer
An application layer methodology is easy and quick to implement and use. We are not
bound by TCP in our capacity to make use of strong hashing functions and entire packets
could be echoed back to their senders to facilitate easy comparison. There are many op-
portunities at the application-layer to create an ideal design, but a critical drawback for us
is the low rate of adoption. We require a technique that can become a natural extension to
one of the lower-layer protocols and gain widespread use. Furthermore, we do not want a
specific application to have to be running on each host in order to examine a path between
endpoints. Problematic middleboxes can be found on a multitude of paths within the Inter-
net and we desire the capability to diagnose any related issues on that path whether or not
our destination is running a specific application-layer server program.

4.1.2 ICMP
Upon initial observation, ICMP is a natural vehicle for the integrity information we need to
communicate. The protocol itself is designed to facilitate diagnosis and transmit error and
control information about IP packets. We gave initial consideration to using new types of
ICMP packets to carry integrity and generated the following scheme ideas:
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ICMP trigger When a sender is concerned about tampering by a middlebox, the system
sends an ICMP message to the destination host to trigger an echo. After
receipt of the trigger, the destination echoes back the next packet that it re-
ceives from that source host. When the sender receives the echoed packet, a
1:1 comparison can be performed between the two versions of the packet.

ICMP error If another integrity check service is in use, echo any packets back to the
sender that fail the integrity checks.

ICMP hybrid 1 The same as the “ICMP error” method, but only echo the failed packet if an
ICMP trigger message has been received from the source.

ICMP hybrid 2 The same as “ICMP error”, but only include the byte offset where the error
occurred in the original ICMP error notice. Then, listen for a trigger message
from the source to see if that system wants the full packet echoed back.

An issue shared by all of these approaches is that they all require the availability of an
out-of-band mechanism. Given the issues with Path MTU discovery [16, 21], we would
expect to encounter a sizable portion of paths where our ICMP messages would be blocked.
Therefore, the number of paths that support detection with ICMP would be a subset of the
in-transport results. Since our targets for detection are paths that experience issues due to
misconfigured and non-standard middleboxes, we cannot afford to miss results on these
problematic paths. There is no additional benefit to ICMP over an in-band method with
respect to having widespread ability to test paths.

4.1.3 TCP
A benefit of working within TCP is that all integrity transmissions occur in-band. If a TCP
port is open and a connection taking place, we should be able to transmit our integrity bits
if we can integrate them into TCP.

The TCP options space is commonly used by extensions and Honda et al. showed that
many unknown options are left intact for both SYN and data packets [11]. With that in
mind, one alternative could be to allow for the sender of any TCP packet to include an echo
trigger within the TCP options of that packet. Upon receipt of a packet with the trigger
in the options, an ACK message is generated for that packet with a quote of as much of
the headers as possible in the options of the ACK message. This would allow the sender
to perform a comparison of the two versions of the headers. Some type of compression
strategy may be needed, however, since there would be more headers than could fit within
the remaining space for TCP options.

Another method we devised for transmitting integrity information is to include it in the
fixed-length fields of the headers. We create space by overloading certain fields that allow
for a degree of flexibility in their values, such as the IP identification (IPID) field and the
initial sequence number field. This method limits us to a small transmission capacity for
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our information, but yields many other nice properties such as good interoperability, testing
availability, no additional RTTs or bandwidth consumed, and symmetric notification is easy
since the concept of a connection is already well-defined. We continue our analysis of
design alternatives by looking more closely at these TCP-based methods.

4.2 TCP design considerations
4.2.1 Fields for transmitting the integrity information
To implement the proposed TCP-based integrity check, the two systems communicating in
a TCP session need to transmit to each other a representation of the packet header states as
each side sees them. To achieve symmetric notification, they must then be able to compare
the state representation as they see it upon receipt with the representation seen by the sender.
The primary issue will be to find which fields can be used to carry the integrity check.

IP and TCP options space
An examination of previously proposed protocol extensions suggests places to avoid as
well as many opportunities. The obvious place to begin looking for space in the headers is
the options fields. The consensus here is mixed. While TCP options may be acceptable and
commonly used, IP options, as Fonseca et al. put it, are not an option [10]. This is due to IP
options not being well supported in the Internet. Many devices aim to minimize processing
time when routing and forwarding IP packets by ignoring or stripping IP options and only
examining the first twenty bytes of the header.

TCP options tend to have much more flexibility, do not impose a performance penalty, and
carry with them fewer traversal issues. Again, prior measurement studies found that TCP
options, even non-standard ones, are often maintained by middleboxes during transit—
Honda et al. found that in the worst case, 80% of paths maintained unknown options [11].
Use of the options are common; the two TCP-based security schemes described in Sec-
tion 2.2 use their own TCP options for extra space to carry key exchanges and hash values.

Problems with using the options include dealing with the paths were options are stripped
and overcrowding. Even if the majority of paths maintain unknown options, it still only
takes a small fraction of paths that do not in order to prevent or demotivate a new protocol
from being deployed. In terms of overcrowding, Ramaiah takes note of the various pro-
posed extensions competing for TCP option space and finds that the originally designated
40 bytes of options are no longer able to meet current demands [19]. When the various
proposals are considered, the options space is already overcrowded and demand continues
to grow.

URG pointer
Some of the workarounds described by Ramaiah suggest more possibilities such as re-
purposing of the TCP urgent pointer. The work suggests that the field’s use has largely
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declined, but repurposing it is likely suboptimal for our needs given that it has prior se-
mantics attached to it and re-purposing it may cause odd behavior with legacy devices. We
intend to check this assumption in later work.

4.2.2 Offset checksums
Another workaround suggested in the work by Ramaiah is the interesting notion of deliber-
ately offset checksums. The idea is to send multiple segments covering the same sequence
number space, with all but one copy having a bad checksum by design. This solution has
nice interoperability properties because any receiver that does not understand the messages
will just think they are corrupt and gracefully drop them. Downsides to this option include
the excess bandwidth consumed, and the fact that this type of behavior may likely trigger
intrusion detection system (IDS) alerts. This idea also relies on the proper behavior of end-
points and in-network elements with respect to bad checksums—that they will gracefully
ignore them.

IPID
Another area of promise are fields that are expected to be able to hold any random number.
There are two such fields in the IP and TCP headers: the IPID and the ISNs, respectively.
The IPID field is a 16-bit field in the IP header that, in the event of fragmentation, is used
to differentiate fragments of one packet from another. It does not matter what the value
is as long as it is unique to each packet when fragmentation occurs. When there is no
fragmentation, the value of the field is of no use in terms of the IP protocol.

Initial sequence numbers
Initial sequence numbers provide a single opportunity for each end host to send 32 bits of
information to the other at the time a connection is opened. Hosts can choose any number
they like to use as the first sequence number of a connection, but it should be random and
unpredictable so as to prevent spoofing and injection attacks. As long as the randomness is
reasonably preserved, ISNs may be another avenue through which information can be sent.
Just as SYN cookies [51] have previously defined semantics for the ISN value, it should be
possible to create a definition of our own. To then leverage the benefits of SYN cookies as
well, a fall-back mechanism can be employed in the kernel to switch over to them as server
resources become scarce [52].

4.2.3 Possibilities from Network Steganography
We find it may also be of use to more closely examine the field of network steganography.
The goal of network steganography is to locate covert channels within the protocol headers
or timing mechanisms to transmit hidden data. Usually these steganographic techniques are
developed under the assumption that two end hosts and their network stacks are in collabo-
ration and discretely pass data between each other without systems in between noticing or
modifying their data. It is an interesting connection to our work because the goal somewhat
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parallels our own. We wish to pass the integrity check data through a side channel as well,
but do not necessarily bear the requirement that it be covert even though it might be useful
to prevent middleboxes from touching it.

An examination of some steganography literature validates our field ideas. Cole uses the
IPID field as well as ISNs to pass data [53], Bennet makes use of deliberately erroneous
checksums [54], and Luo et al. encode hidden data by partially acknowledging smaller
pieces of data at a time and having the other end track the amount of bytes acknowledged
with each response [55].

While there may be overlap in field usage ideas between our work and that of network
steganography, we emphasize that our goals are fundamentally different. We aim to locate
fields that will be most compatible with middleboxes. We are not trying to evade detection
or design covert communication channels.

4.2.4 Protection coverage
Another design consideration that must be made is to determine which fields should be
protected by the integrity check. The RFCs for IPsec define specific fields in the IP and
TCP headers as either mutable or immutable. We take a similar approach with this work
and only compute the check across fields deemed immutable, that a middlebox should not
modify. Of course, the DSCP and TTL bits in the headers will be mutable, but the check
must have the ability to ignore integrity on the common flow identifier fields such as IP
addresses and TCP ports. Since NAT devices are prevalent and expected to change these
fields, the check has to allow for the option of detecting NAT or ignoring and traversing it.

4.3 TCP design variants
For each subsequent variant section, we define the following key properties:

Throughout connection
We can either protect just the 3-way handshake or the entire connection. Detecting some
modifications requires examining a full connection. For example:

• A middlebox, M, modifies initial TCP sequence numbers, but fails to also update
SACK blocks into new sequence number window. The SACK blocks will not appear
until after the handshake.
• M shrinks the TCP receive window in order to throttle the connection between A and

B. This could happen at any point during the connection.

Diagnostic mode
Some of the variants are not able to coincide with a connection for an application, e.g.,
www, ssh. If so, they will be marked as “diagnostic only,” meaning that no application data
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should be sent through the connections used by that variant. It can still operate with any
open TCP port on a server, but the connection that is created only serves the purpose of
checking packet header integrity, after which it is closed.

The ability for a pair of endpoints to create a diagnostic connection creates further issues:

• How does each endpoint detect that a given connection is diagnostic?
• How do you prevent M from determining the same thing? If M knows which con-

nections are diagnostic, it can adjust its behavior for only those connections.

Fields used
This item lists the fields within the TCP or IP headers that each variant uses in the trans-
mission of integrity or status information.

Raises bar on M
At this point we are only focused on communicating integrity information. Chapter 5 takes
a deeper look at protecting the integrity and what can be done to stop or at least discourage
the information from being modified by the middleboxes we target. For purposes of com-
parison with the design variants in that chapter, we include a quantification of the level of
protection afforded by each variant.

4.3.1 Notation
The diagrams of each variant within this document will show information passing between
two hosts, A and B. The information itself will be consistently described in the format
shown in Figure 4.1.

what where

when

who

A B

Ah1 = f(...)

Ah1' == f(...)?

Bh1 = f(...)

Bh1' == f(...)?

Ah2 = f(...)

h
A 1

'

Figure 4.1: Standard notation for variant diagrams
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What: The type of information (e.g., salt, h, etc.)
Who: The party that originated the information (either A or B)
Where: A prime symbol (′) here indicates that this is the value of the information

after having transited the network. In other words, this information may
have been modified by M.

When: A number n to indicate that this is the nth piece of information of similar
type from the same origin. If not present, then it means the information is
only sent once from that origin.

Also discussed is f (), a publicly known hashing function that converts field state represen-
tations to hash values.
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4.4 Variant 1: Opportunistic HICCUPS
In this variant, A and B each embed a hash and salt value in their SYN and SYN-ACK,
respectively.

Throughout Connection: No, handshake only
Diagnostic Mode: None
Fields Used: Initial Sequence Number (ISN)

IPID (on first packet)
Raises Bar on M: Not really. M must recalculate 2 hash values and at most

store 1 packet header for up to half of an RTT.

4.4.1 Detailed Description
The opportunistic variant of HICCUPS has the ability to inform both parties in a TCP con-
nection if their packets were unmodified, without requiring a special diagnostic connection
or an extra RTT. This is important for high-performance applications that cannot afford any
added delays. The packets exchanged as part of this check look no different to the network
than any other similar packets, the only difference is that they have an ISN and IPID that
have special meaning. The opportunistic check was designed to operate as part of a normal
connection between two hosts that may or may not be using HICCUPS.

An example timeline of the opportunistic check between two hosts A and B is shown in
Figure 4.2, where A initiates the TCP active open. When A sends the first packet, it must
include a random string (the salt) and the result of the function of that packet’s fields and
salt value. The salt value is placed in the IPID field and the output from the function is
placed in the ISN.

We define the following:

Asalt ← rand()

Ah = f ( f ieldsSYN,Asalt)

The function f () is public, e.g., a known hash function. This allows the host at the other
end of the connection to compute Ah′ using the standardized function and the fields and salt
values of the packet from A as seen by B. If there were no modifications, then Ah′ == Ah.
Should they match, B can say that A’s packet was unmodified.

At this point, B generates its own salt and ISN value for the returning SYN-ACK packet.
If the checks by B pass, then it should incorporate a way for A to know that they passed
as well. This can be done by including something known to A in the function input. The
fields from the SYN packet can be combined with the fields from the SYN-ACK packet in
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A B

Asalt Ah

ipid seq ack

Bsalt Bh

ipid seq ack

A+1

seq ack

A+1

B+1

SYN

SYN-ACK

ACK

Asalt ← rand()

Ah = f(SYN, Asalt)

Bsalt ← rand()

Bh = f(SYN, SYN-ACK, Bsalt)

Figure 4.2: Timing diagram with no modi�cations

calculation of the sequence number used in the SYN-ACK:

Bsalt ← rand()

Bh = f ( f ieldsSYN, f ieldsSYNACK,Bsalt)

Should the check fail at B, it could inform A by leaving out the f ieldsSYN input from f ().
This would yield the following instead:

Bh = f ( f ieldsSYNACK,Bsalt)

When A receives the SYN-ACK reply from B, it must check the packet’s sequence number
against both possibilities. The function must be computed using each of the two input
combinations B may have used above and determine whether either of them match the
sequence number it sees. Table 4.1 lists all possible outcomes at each end of the exchange.

4.4.2 Faking Integrity
In order for M to fool A and B into thinking that no modifications were made, it must simply
recalculate Ah and Bh after performing its modifications. M does not need to regenerate salt
values; it can reuse the ones chosen by A and B. Finally, M must be able to store the SYN
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At host B after receiving SYN:
Ah == f ( f ieldsSYN,Asalt) SYN unmodified
else SYN modified

or A not capable
At host A after receiving SYN-ACK:

Bh ==
f ( f ieldsSYN, f ieldsSYNACK,Bsalt)

SYN and SYN-ACK
unmodified

Bh == f ( f ieldsSYNACK,Bsalt) SYN modified
but SYN-ACK not

else SYN-ACK modified
or B not capable

Table 4.1: Possible outcomes of the opportunistic check

fields until it can calculate Bh. At most, this will be until it sees the SYN-ACK return from
B. Figure 4.3 summarizes this process.

4.4.3 Pros
• Interoperable, incrementally deployable

4.4.4 Cons
• Does not protect the entire connection
• Can be disabled by overwriting initial sequence numbers
• Bob cannot distinguish between Alice not being HICCUPS-capable and a modified

field

4.4.5 Thoughts and Status
Simple; easy to understand and implement. A good first step and proof-of-concept. Imple-
mentations of this variant currently exist in the CMAND repo in both kernel and user space
versions. See Chapter 6 for more details.
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A B

SYN

SYN-ACK

ACK

M

store SYN,
be evil,
recalc Ah

Ah, Asalt

Bh, Bsalt

be evil,
recalc Bh

Figure 4.3: Necessary actions to fool A and B

4.5 Variant 2: Offset Sequence Numbers
In this variant, hash values are added to the sequence numbers in each direction.

Throughout Connection: Yes
Diagnostic Mode: Yes, diagnostic only

Mode Hidden? Reasonably so
Fields Used: SEQ and ACK
Raises Bar on M: Not really. M has to guess that the connection is in di-

agnostic mode, recalculate 2 hash values, and store a
sequence number for up to half of an RTT.

4.5.1 Detailed Description
This variant performs additive increases to the sequence number of each packet in the
connection, with that increase being expected by the other HICCUPS-capable end-host of
the connection. The result of the public function, f (), is added to the sequence number at
the completion of the handshake. This new sequence number will be outside the receive
window of the opposite host, forcing a duplicate ACK from a non-HICCUPS host.

The example timeline in Figure 4.4 is a demonstration of the offset sequence number variant
as carried out between two HICCUPS-capable hosts. After A completes the handshake, it
immediately sends the next packet where the sequence number is f () more than before.
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A B

101 501

SYN

SYN-ACK

ACK

500 101

100

seq ack

860 501

f' = 860-101

or
RST

934 861

RST

or

f' = 934-501
861 935

RST

ACK

ACK

ACK

Figure 4.4: Two HICCUPS hosts (no mods)

A B

101 501

SYN

SYN-ACK

ACK

500 101

100

seq ack

860 501

501 101

ACK

ACK

RST

Figure 4.5: B not HICCUPS host

In this example, f () was 759. Upon receipt, B can recompute f () from the values of the
packet and check to see if it matches the difference in sequence numbers. If it does, B does
the same thing as A and sends a packet with an additively increased sequence number. If it
does not, then B can send a RST packet to end the connection. A then does a similar check
in response.

Figure 4.5 shows the timeline where B is not using HICCUPS. If B replies with a DupACK,
we know it must be plain TCP and does not understand our offset sequence number. Thus,
we cannot get an integrity check out of this host. Something to note here is that some
systems will not respond with a DupACK unless the difference in sequence number is
greater than the host’s receive window. This can be handled by adding a value to f ().

The primary benefit of this variant is that it enables each end of the connection to distin-
guish between a failed integrity check and a host not using HICCUPS. This eliminates the
ambiguity present in the opportunistic variant from Section 4.4. In order to accomplish
this, the connection is completely used as a diagnostic connection that does not handle any
application data. It should be possible, however, to begin a connection using the oppor-
tunistic check and then switch to this variant if there was an issue with the results of the
first check.
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4.5.2 Faking Integrity
In order for M to fool A and B into thinking that no modifications were made, it must
first recognize that a diagnostic connection is taking place and then overwrite the sequence
numbers with adjusted values.

Recognization of the mode is a tricky issue. The packets will appear to be out-of-order to
most systems, and the check must match up to detect the mode. Granted, M could match
up the check the same as B can, but either way, we introduce a little probability into M’s
decision.

Once M makes the decision that a given connection is performing the offset sequence num-
bers check, it must perform the actions as shown in Figure 4.6 in order to fool A and B into
thinking that their connection has integrity. This includes saving a 32-bit sequence number
for up to half of an RTT and recalculating two hashes.

A B

101 501

SYN

SYN-ACK

ACK

500 101

100

seq ack

860 501

Ah' = 860-101

934 861

Bh' = 934-501
861 935

ACK

ACK

ACK

M

decide mode,
save seq+1,
be evil,
recalc Ah,
replace seq

be evil,
recalc Bh,
replace seq,
fix ack

Ah = 759

Bh = 433

Figure 4.6: Necessary actions to fool A and B

4.5.3 Pros
• Don’t change ISNs, so don’t need salt in IPID
• Should get through systems that securely randomize initial sequence numbers since

we only care about the deltas
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4.5.4 Cons
• Essentially injecting junk into the network which may have unintended consequences
• Some systems may react poorly to the out-of-window sequence number

4.5.5 Thoughts and Status
We do not know what to expect from the network as a whole in handling the offset sequence
numbers. This variant essentially involves injecting junk into the network and hoping it is
transited properly. Probably not useful on its own.

However, a really big key here is the design facet that it is one way of successfully dis-
tinguishing between a HICCUPS host and a non-HICCUPS host without marking up the
packets in a manner that may introduce incompatibilities.
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4.6 Variant 3: Probabilistic Hashes
In this variant, smaller hashes bounce back and forth between A and B. The result is
probabilistic over many trials throughout the connection.

Throughout Connection: Yes
Diagnostic Mode: None
Fields Used: IPID
Raises Bar on M: No. Per packet it sees, M only has to recalc 1 hash and

store 1 hash for up to half an RTT.

4.6.1 Detailed Description
If we allow the hashes to be really small (for instance a single byte), we can squeeze two
of them into the IPID fields of every packet in a connection. Obviously with such a small
range of outputs for f () we should expect a fair amount of collisions. However, if we do
these checks on each packet over the life of a connection, the probability of all of them
being collisions becomes very small. This is akin to the way the ECN nonce [18] works.

The timing diagram in Figure 4.7 shows the small hashes bouncing back and forth between
A and B. For the purposes of this example, imagine that the IPID field is split in two and
the upper byte is used for A’s hashes with the lower byte used for B’s hashes. The host
sending a packet includes a mini hash of its fields in its half of the IPID. Also, for all but
the very first packet, the other end host’s hash can be echoed back to them. This gives both
ends of a connection visibility into modifications in each direction.

Upon receipt of a packet, the receiving end host can perform two checks:

• Does the echoed hash equal what was sent?
• Does the hash from the other end equal a hash of the fields?

The results of these two checks give the host insight over modifications to packets sent and
received, respectively.

Due to the short length of the hashes, there is a larger chance of having collisions. This
means that there is a sizable chance our check may not work, even with M being nice and
not altering fields. We can tolerate this, though, because each packet is another trial and if
M is modifying fields (but not necessarily trying to fool us), we are bound to see it with the
majority of the packets.

Note that we make a small adjustment to the notation from Section 4.3.1. We substitute h
for Ah and g for Bh.
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h1

h1'

h2

h2'

h3

g1

g1'

g2

g2'

A B

h1' = f(Afields1')
h1 == h1'?
g1 = f(Bfields1)

h1 == h1'?
g1' = f(Bfields1')

g1 == g1'?
h2 = f(Afields2)

h1 = f(Afields1)

h2 == h2'?
g2' = f(Bfields2')

g2 == g2'?
h3 = f(Afields3)

g1 == g1'?
h2' = f(Afields2')
h2 == h2'?
g2 = f(Bfields2)

Figure 4.7: Timing diagram with no modi�cations

4.6.2 Faking Integrity
In order for M to fool A and B into thinking that no modifications were made, it must replace
each of the mini hashes exchanged between them. For each packet that passes through M,
it must recalculate a hash and store the original for up to half an RTT.

4.6.3 Pros
• Simple, easy to understand
• Lightweight, relies on probabilities over multiple trials
• Hash is echoed back to you as the other end saw it

4.6.4 Cons
• Need to use on lengthier connections
• Results may be fuzzy
• Easy for M to intercede

4.6.5 Thoughts and Status
This variant seems like it would work well, until middleboxes catch on. Once they do, it
would be very easy for a middlebox to redo the hashes. M has to do about half of the sum
of the work A and B must do in order to fool them. Not great at raising the bar.
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4.7 Variant 4: Hash Striping with Resets
This is an improved variant that transmits the integrity hashes in triplicate in order to with-
stand a modification to one of the integrity fields. Having 3-way striping of the hash gives
reasonable proof that HICCUPS is used by the SYN initiator and allows for a TCP RST to
be sent when the hashes fail to match.

Throughout Connection: No, handshake only
Diagnostic Mode: None
Fields Used: Initial Sequence Number (ISN)

IPID (on first packet)
TCP Receive Window (on first packet)

Raises Bar on M: Not really. M must recalculate 2 hash values and at most
store 1 packet header for up to half of an RTT.

4.7.1 Detailed Description
The impetus for this variant came after performing initial tests on PlanetLab using the
standard opportunistic HICCUPS. The results are discussed in more detail in Chapter 7, but
about 13% of the nodes we tested experienced some combination of either ISN translation
or modification of the IPID field. While it was good that we were able to detect that a
packet header modification was taking place, we lose visibility to any other changes made
to the packet by M. This is because our integrity hash is overwritten and we lose the ability
to check the smaller subsets of header fields that do not contain the ISN or IPID fields.

This variant solves the issue by copying the integrity hash into three separate fields of the
packet header. In addition to the fields we used before, ISN and IPID, we also use the
TCP receive window. It was realized that the value of this field is not important during
the three-way handshake and could be repurposed. A random salt value is still required in
order to ensure proper randomization of the ISN, so all hashes are set at 16 bits in length
and the 16-bit salt is placed in the upper half of the ISN with the hash going into the lower
half. The layout within the fields is shown below in Figure 4.8.

Figure 4.8: Hash and salt layout in header �elds
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The host that receives the SYN will check to see if any two of the three hash bit ranges
match. This will allow transmission of the integrity hash even if one of the three fields
were modified by M. A “majority rules” vote is taken from the three fields and that hash
is assumed by the receiver to be the HICCUPS hash sent by the SYN initiator. Obviously,
if any two of the fields are modified, we lose granularity and can only tell that the path
integrity has failed.

A key observation is that it is highly unlikely that any two of the 16-bit fields would be
exactly the same unless they were originally set that way by a HICCUPS-enabled SYN ini-
tiator. In the worst-case, a randomly set ISN will match either the IPID or receive window
value, causing the remote end to infer a HICCUPS capability and calculate path integrity,
which will fail. Because of this unlikelihood, we extend this variant with a TCP RST to
enable a feedback mechanism.

When the SYN receiver detects a HICCUPS hash (by finding 2 of the 3 hash fields with
the same value), and then determines that hash to fail the integrity check, it will respond
with a TCP Reset packet. This RST will act as feedback to the SYN initiator that bits were
modified while the SYN was in transit to the receiver. It can be differentiated from a RST
due to a closed TCP port by sending a SYN without any HICCUPS hashes. In this case,
the receiver will not find 2 of 3 fields with the same hash and must not respond with a RST
since the SYN initiator is assumed to be not HICCUPS-capable.

If the hashes both exist and pass integrity checks, a similar layout is used to transmit in-
tegrity in the SYN-ACK. An example transaction is shown in the timing diagram in Fig-
ure 4.9.

All other aspects of this variant are similar to the Opportunistic variant in Section 4.4. Both
parties are informed about the path integrity and it fits with the TCP handshake, so only
a single RTT is required for integrity status to be obtained. The only downside is that we
now use smaller hashes, 16 bits long instead of 32.

4.7.2 Faking Integrity
In order for M to fool A and B into thinking that no modifications were made, it must simply
recalculate Ah and Bh after performing its modifications. M does not need to regenerate salt
values; it can reuse the ones chosen by A and B. Finally, M must be able to store the SYN
fields until it can calculate Bh. At most, this will be until it sees the SYN-ACK return from
B. This is exactly the same as for the Opportunistic variant, but instead the hash has to be
written three times.

One possible weakness of this variant (depending on the viewpoint) is that, along with the
receiver, any middleboxes along the path of the packet can tell that the SYN initiator is
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Figure 4.9: Timing diagram with no modi�cations

using HICCUPS. This saves a devious middlebox from having to overwrite hashes on all
SYNs it sees and instead just focus on ones where two out of the three fields have the same
value.

4.7.3 Pros
• Interoperable, incrementally deployable
• Withstand modifications to any one of the three fields used to transmit integrity
• Gives status feedback through RST packet (stopping the connection before it starts

and allowing the initiator to retry with less features enabled)
• Can distinguish between HICCUPS-capable and a failed integrity check

4.7.4 Cons
• Does not protect the entire connection
• Still breaks if any two integrity transmission fields are modified
• Uses smaller length hashes and would be prone to more collisions

4.7.5 Thoughts and Status
Fairly simple to understand, but implementing the RST work may be difficult in kernel. The
variant’s key features of feedback and hash modification tolerance are definitely needed
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after seeing PlanetLab results. RST can make things messy for non-HICCUPS hosts, how-
ever, and if we do not do the RST how else can we transmit the status feedback?

44



4.8 Variant 5: Hash Rainbow
This variant is similar to the previous variant in Section 4.7, except that the TCP RST is not
used as feedback response. Instead, four bits are taken from each hash and used to carry
the status. To avoid collisions while allowing for smaller hashes, a different hash function
is used for each of the three hashes.

Throughout Connection: No, handshake only
Diagnostic Mode: None
Fields Used: Initial Sequence Number (ISN)

IPID (on first packet)
TCP Receive Window (on first packet)

Raises Bar on M: Not really. M must recalculate 6 hash values and at most
store 1 packet header for up to half of an RTT.

4.8.1 Detailed Description
This variant transmits an integrity representation in three places, the ISN, IPID, and TCP
receive window. For each of the three fields, the integrity input is hashed using one of three
different hashing functions. For example, the hash we place in the ISN may use MD5,
while the hash we place in the IPID uses SHA-1 and the hash in the receive window uses
SHA-256. The layout is described in Figure 4.10.

Figure 4.10: Hash and salt layout in header �elds

The reason behind this “rainbow” of hashes is that the hash values themselves are only go-
ing to be 12 bits long. That means there is a 2−12, or 1

4096 , probability that a random number
would be misinterpreted as a valid hash showing correct integrity. Since this probability
is fairly high, the multiple hashing functions are used to reduce the chance of a false posi-
tive. The chance that the values placed in any two fields by a non-HICCUPS sender would
match the expected outputs of two different hashing functions should be much lower.

Since the hashes have been reduced in length to 12 bits, that leaves 4 bits to be used for
transmitting status information. In the SYN, these 4 bits carry the coverage type that the
SYN initiator would like for the SYN receiver to use when it builds the integrity in the
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SYN-ACK. On the returning SYN-ACK, the 4 bits carry the status of the SYN integrity.
The transaction is summarized in Figure 4.11.

For the status bits on the SYN-ACK, the lowest order bit is used to signify whether the
hash in the RCVWIN field of the SYN matched. The next lowest bit signifies a match in
the IPID hash, and the third bit signifies a match in the ISN hash. The highest of the four
status bits is always set to 1 so that the TCP receive window value will not go lower than
32,000.

Figure 4.11: Timing diagram with no modi�cations

4.8.2 Faking Integrity
The actions that need to be taken by a middlebox and the issues involved are the same
as with the variant in Section 4.7. The only difference is that, due to the different hash
functions, middleboxes can no longer immediately tell that a packet is HICCUPS-enabled.
This fact forces a devious middlebox to overwrite hashes on all packets if it wants to fake
integrity. The middlebox will also have to perform all three different hashing functions for
each packet it modifies.

4.8.3 Pros
• Interoperable, incrementally deployable
• Withstand modifications to any one of the three fields used to transmit integrity
• Gives status feedback
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• Won’t disrupt any connection attempts due to RST

4.8.4 Cons
• Does not protect the entire connection
• Still breaks if any two integrity transmission fields are modified
• Uses smaller length hashes and would be prone to more collisions (but is helped out

by the three different hash functions)
• Can’t distinguish between non-HICCUPS capable and failed integrity check (but at

least the middlebox can’t either)

4.8.5 Thoughts and Status
Seems like the best option. Primary concern with this strategy is the small size of the
hashes. We have not quantified how good of a job the rainbow of hash functions does at
reducing collisions in the hashes.

But this variant has many good qualities, listed above in the “Pros” section. This combina-
tion of good qualities is not present in any of the other variants, making this variant very
enticing, but the concern of the small hash sizes must be managed.
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CHAPTER 5:
Protecting Integrity

The design variants described thus far are effective at detecting packet header manipula-
tions and communicating integrity. Modifications by legacy middleboxes that are either
unaware or unable to recognize a connection with HICCUPS integrity will be readily ex-
posed.

However, we must work under the assumption that future middleboxes will have full knowl-
edge of the HICCUPS protocol and could even be engineered to evade detection. A deceit-
ful middlebox could modify the packet headers how it chooses and then rewrite the integrity
values used by HICCUPS to detect those changes. In other words, the middlebox could fool
each of the two end hosts in the connection into thinking no tampering took place.

Since our design constraints preclude the use of a stronger construction, e.g., a keyed-
HMAC, we cannot outright prevent a middlebox from recalculating the integrity. Instead,
we strive to add a lighter degree of protection to the integrity and raise the bar on the level
of difficulty for a middlebox to make modifications to packets undetected.

5.1 Raising the bar on the middlebox
In order to make it more difficult for a middlebox to recalculate hashes and cover up its
modifications, we need to include a secret into that hash that only the endpoints know.
However, with no out-of-band channel between the two end hosts and no Diffie-Hellman-
like setup, coming up with such a shared secret is difficult. Instead, we look for things that
would be difficult for a middlebox to know, but much easier for one or both of the endpoints
to know.

As long as one of the endpoints in a connection has such a secret, the integrity value can be
encoded with that secret and a middlebox will not be able to replace it with another valid
value. Although a true shared secret may not exist, we can still protect the integrity as long
as the secret stays hidden from the middlebox long enough to force it to forward the initial
packet. If we reveal the secret after the middlebox has already forwarded the packet for
us, it will no longer be able to change the integrity and the other end host can decode the
integrity value. These “ephemeral secrets” could be any property of a connection that is
known only to the sender at the start of the connection. Some possibilities include:

• When a conversation might start
• The parties involved (IPs, ports, etc.)
• Length of a connection (time, bytes, number of packets)
• Timing of individual packets
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• Residual TTL
• Proof-of-work
• Application data

There could also be something random that is decided by one of the endpoints, like a coin
flip. The overall goal is to add protection to the integrity while imposing as little of the
increased burden as possible on the end hosts. The sending host only has to encode the
integrity value and the receiving end host only has to store the received integrity until the
secret is revealed.

The rest of the sections of this chapter describe design variants that utilize this technique to
add protection to the integrity value during its transmission.
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5.2 Variant 6: CoinFlips
In this variant, a coin flip is added to the probabilistic variant from Section 4.6 to try to
raise the bar on M.

Throughout Connection: Yes
Diagnostic Mode: None
Fields Used: IPID
Raises Bar on M: Yes. M must do at least as much work as either end-

point. Each RTT it must calculate 5 hashes and store 3
for up to half an RTT.

5.2.1 Detailed Description
At its core, this variant is the same as the probabilistic variant described in Section 4.6.
Except now, we have added a bit of randomness to how each side encodes the hash it
echoes. This forces M to do some calculations to determine the result of the coin flip so
that it knows how to encode the echo hash on the return packet.

In the conversation shown in Figure 5.1, A initiates the active open and B handles the coin
flips. It is A’s job to determine the value of the flip and use it to properly encode the hash it
is about to echo back to B. B then checks to ensure that the echoed hash was encoded with
the same side of the coin that it used.

h1

Fh1'

h2

Fh2'

h3

g1

Fg1'

g2

Fg2'

A B
F = rand(H,T)

Fh1' = f(Afields1' | F)
g1, Hg1, Tg1

Match Fh1' to Hh1, Th1

Find out value of F

Fg1' = f(Bfields1' | F)
h2, Hh2, Th2

h1 = f(Afields1)

 Hh1 = f(Afields1 | H)

Th1 = f(Afields1 | T)

Match Fh2' to Hh2, Th2

Find out value of F

Fg2' = f(Bfields2' | F)
h3, Hh3, Th3

F = rand(H,T)

Fh2' = f(Afields2' | F)
g2, Hg2, Tg2

Figure 5.1: Timing diagram with no modi�cations
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For the notation, we make the same adjustment as the last section where we substitute h for
Ah and g for Bh. We use the pre-subscript to denote the value of the coin flip.

5.2.2 Faking Integrity
This variant includes lots of extra steps over the Passing Hashes variant, but it does raise the
bar more on M. In order to force more work upon M, we must do a little more ourselves
as well. The question is: did we make M do more extra work than we had to do? The
conversation where M tries to fool is shown in Figure 5.2.

In order for M to fool A and B into thinking that no modifications were made, it must
calculate 5 hashes per RTT and store 3 for up to half an RTT. This is a much greater burden
on M than the calculate 1, store 1 requirements of the Passing Hashes variant.

be evil,
recalc h1, Hh1, Th1

Match Fh1' to find F
be evil,

recalc g1, Fg1

be evil,
replace Fg1

recalc h2, Hh2, Th2

A B

Fh1', g1, Fg1

Fg1', h2, Hh2, Th2

h1,  Hh1, Th1 

Fh2', g2, Fg2

M

Figure 5.2: Necessary actions to fool A and B

However, we have also increased the load on A and B. Per RTT, A and B must calculate up
to 4 hashes each and store up to 2 hashes. The good thing though, is that we have raised
the bar on M to just above the work required by either A or B. So in order for M to fool us,
it must work harder than either end point.

5.2.3 Pros
• Raised the bar a bit on M, but not up to the sum of the work of A and B
• Has many of the same pros of the probabilistic variant
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5.2.4 Cons
• More expensive than the probabilistic variant
• Still needs many trials (packets) to get a good reading

5.2.5 Thoughts and Status
Shows much promise, but does not quite get us all the way where we wanted to be: where
M has to do as much work as A and B combined. Still good though. We tested some other
closely-related variants, but not seemed to get the ratio of M’s work to A’s work as high as
CoinFlips did.

53



5.3 Variant 7: HashCash
The goal of this variant is to stop a middlebox from easily overwriting fields by requiring
the hashes to have a specific property.

Throughout Connection: No, handshake only
Diagnostic Mode: Yes, diagnostic only

Mode Hidden? No, would be mostly detectable
Fields Used: Initial Sequence Number (ISN)

IPID
Raises Bar on M: Yes. After modifying a packet, M must spend CPU cy-

cles to find a good value of R if it intends to fool A and
B.

5.3.1 Detailed Description
In this variant, we require the hashes to show that some computation work was accom-
plished by the originator. One such way we could do this is to require that the hashes end
in a minimum number of zeros. In order to generate a hash that has this property, a system
must essentially brute force different values to include with the input to reach the desired
property on the output. In our notation, we will call this special value R. When a valid R
is given as input to the hashing function along with the field state representation, it should
produce an output with at least the required number of zeros at the end.

A B

AR Ah
Find R such that

     Ah = f(Afields, AR)
        = xxxxxx000...

Ah' has property?

Ah' == f(Afields', AR')?

Bh = f(Bfields, BR)

Bg = Bh ⊕ Ah'

B precomputes a
pool of (h,R) pairs
using its source IP

BR Bg
Bh' = Bg' ⊕ Ah

Bh' has property?

Bh' == f(Bfields', BR')?

Figure 5.3: Timing diagram with no modi�cations

We then leverage the fact that M does not know when a given connection will start, nor
what parameters it will have. This means that M cannot start working on the puzzle until
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it sees the SYN packet come through. The connection initiator, A, took some time to
solve the puzzle before it sent the SYN. This means that there was some lag in starting the
connection, but this is less of an issue if it is a diagnostic connection.

After A begins the connection by transmitting the (h,R) pair, B performs two checks on the
pair:

1. Does h have the property (end with enough zeros)?
2. Does h equal a rehash of the packet’s fields?

B then responds with an (h,R) pair of its own that it has precomputed with some common
values and its source IP. We will have to specially craft the set of fields for this check so
that B can perform this as precomputation.

5.3.2 Faking Integrity
In order for M to fool A and B into thinking that no modifications were made, it must
quickly make its changes and calculate a new (h,R) pair as soon as it sees A initiate the
active open. Depending on how difficult we tweak the puzzle, this should take a detectably
long enough amount of time. M will have to delay the packet and we can look for the
abnormally long RTT.

5.3.3 Pros
• Good at discouraging a middlebox from interfering

5.3.4 Cons
• Forces the endpoints to spend CPU cycles solving hash puzzles
• Lag time from when A’s user requests a connection until it solves the puzzle and

builds the SYN

5.3.5 Thoughts and Status
This is a big step forward over the previously discussed variants at raising the bar on the
middlebox. Ultimately, we believe that the cons listed above would force this to be only
used in a diagnostic mode connection. This gets into a question of can M tell whether we
are in the diagnostic mode or not.

If M can easily detect when two hosts are in diagnostic mode, it can just play nice in those
cases and change packets in all the rest of cases. In this variant, there is nothing to disguise
the mode. If a middlebox sees hashes that do not satisfy the two checks, it can freely
modify packets. Variants in subsequent sections try to tackle this problem.
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5.4 Variant 8: Reverse Hash Chain
The salient feature of this variant is that it hides the existence of a check from M until the
full hash chain is revealed. All of the chain’s hashes look random until the salt is revealed.

Throughout Connection: Yes
Diagnostic Mode: Optional

Mode Hidden? Yes, until chain revealed
Fields Used: IPID
Raises Bar on M: Yes for detection, but M can still easily overwrite chain.

Can also make a strong argument using a random sam-
pling of checks.

5.4.1 Detailed Description
This variant employs a reverse hash chain to obscure whether the hashes are a check or just
random bits. Instead of directly embedding the hashes in the packet, we run it through the
hashing function several more times and embed the final output. This results in a chain of
values where it is really easy for a computer to determine a relationship in one direction,
but not the other. By starting off the connection with the end of a hash chain, we make
it very difficult for a middlebox (and the other endpoint) to trace the chain in reverse and
determine the original value.

A B

h1

c0 = salt
c1 = f(Afields1, salt)
c2 = f(c1)
c3 = f(c2)

h2 = f(c2, Afields2)

h2

salt

h3

h3 = f(c1, Afields3)

Save Afields1'

Do all checks

Save Afields2'

Save Afields3'

Chain length: 4

h1 = c3

h4 = c0

Figure 5.4: Timing diagram with no modi�cations

Figure 5.4 shows an example conversation using the reverse hash chain check. For illus-
tration purposes, we fix the length of the chain at four packets, but it can be any preset
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length. The length can be tuned according to how long you want to delay detection. The
final (in our case, fourth) packet of the chain reveals the information needed to reconstruct
the chain. We call this random value the salt. The salt is needed because it prevents M from
reconstructing the chain on the first packet.

The following order of events occurs for the length 4 chain:

1. A chooses a random salt value, c0
2. A hashes (c0, f ields1) to get c1
3. A hashes c1 to get c2
4. A hashes c2 to get c3
5. A embeds c3 into first packet and sends it
6. A embeds the hash of (c2, f ields2) into the second packet
7. A embeds the hash of (c1, f ields3) into the third packet
8. A embeds the salt, c0, into the fourth and final packet

Now M and B can both reconstruct the chain and verify the fields hashes. The extra hashes
in steps 5 and 6 provide integrity over the middle packets of the chain. B can go back and
check these too once it gets the salt.

The key effect we have had is that M did not know until the end of the chain whether we
were actually doing a check. On the first packet, we force M to commit to either:

• overwriting the chain (which it can easily do), or
• leaving the hashes unmodified

If M always chooses to overwrite just to be safe, it will be doing more work than necessary
since some connections will not use a check. Therefore, the burden on M is much greater
than on the endpoints, since they only have to expend the hash chain computations when
they decide to do a check. If M fails to overwrite the chain beginning with the first packet,
the connection will fail our checks and we can detect it.

5.4.2 Faking Integrity
As mentioned before, it is easy for M to overwrite the hashes and replace them with its
own. It only needs to do the recalculations. What this variant makes difficult is detecting
the check until the end of the connection, so we will discuss that here.

Suppose M sees the packet and wants to tell if a check is being used. Examination of the
field holding the hash looks like random bits. The only other option is to try to reconstruct
the chain. To do this, two things are needed:

1. the fields over which the hash chain is based
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2. the salt

With the first packet, M has the first item. But it still needs the salt, which is not disclosed
until the last packet in the chain.

From here, M’s only option is to try to hang on to a group of packets in an attempt to capture
the salt from the last packet before it has to forward along the first packet. Depending on
how long the chain is and how the connection is being used, this can deadlock or wedge
the connection because responses (flow control updates, application messages, etc.) from
B may be needed to elicit the rest of the chain from A.

5.4.3 Pros
• M cannot detect if a connection is HICCUPS-enabled until the end of the chain
• Can make an over-zealous M do more computation than you, thus raising the bar

5.4.4 Cons
• M can blast over the chain and insert its own, faking integrity
• Endpoint do not get integrity feedback until the end of the chain

5.4.5 Thoughts and Status
This variant stands apart from the rest in its ability to prevent detection of the check until
the reveal is done.

We make the “raising the bar” argument by employing randomness in our protection strat-
egy. The idea here is that we randomly protect some 1/N connections or 1/N packets.
Since the middlebox cannot easily guess which packets are protected, he must overwrite
hashes on all N of them if he wants a guarantee to fool us. This can be detected when we
start seeing valid hash chains for connections and packets which were never protected in
the first place.

Furthermore, since our solution is incrementally deployable, there may be connections that
never run a check, and M will have to sort through those as well (although it could keep a
history of hosts that never embed valid chains, but this is still extra work).

As we will show in the next two sections, this technique can also be combined with Hash-
Cash and AppSalt to make them stronger and further raise the bar on M.
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5.5 Variant 9: HashCash with Reverse Hash Chain
This variant is a combination of HashCash and reverse hash chains. It requires the original
hash of the chain be a special HashCash hash.

Throughout Connection: Yes
Diagnostic Mode: Yes, diagnostic only

Mode Hidden? Yes, until chain revealed
Fields Used: IPID
Raises Bar on M: Yes, stronger than HashCash and reverse hash chains.

5.5.1 Detailed Description
Similar to the HashCash variant, A and B can precompute a pair (h,R) where R is a value
that is added to the input of the hashing function. The value R causes the output h to have
a property which is easily checked. Such a property could be that the hash begins with a
minimum number of zeros.

In this variant, we now use the reverse hash cash to obscure the HashCash hash within a
chain. The setup is the same as described for the reverse hash chain variant. The only
differences are that the R value is used as the salt given by the REVEAL, and the original
hash of the chain has the HashCash property.

The variant is outlined in Figure 5.5. As with HashCash, A brute forces through different
salts to find a resulting h that meets the specified property. More specifically, the resultant
hash h must be an element of the set of all hashes that meet the property, or h ∈ P.

The following order of events occurs for a length 4 chain:

1. A brute force searches for a value that yields h such that h ∈ P. This value is c0.
2. A hashes (c0, f ields1) to get c1
3. A hashes c1 to get c2
4. A hashes c2 to get c3
5. A embeds c3 into first packet and sends it
6. A embeds the hash of (c2, f ields2) into the second packet
7. A embeds the hash of (c1, f ields3) into the third packet
8. A embeds c0 into the fourth and final packet

Basically it is exactly the same as the reverse hash chain variant, but we replace the random
salt value with one that requires computational cycles. This makes it difficult for any mid-
dlebox to overwrite the chain since it must start with a value that is valid for the HashCash
scheme.
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A B

h1
Find c0 s.t. c1 = xxx000
c1 = f(Afields1, c0)
c2 = f(c1)
c3 = f(c2)

h2 = f(c2, Afields2)

h2

$alt

h3

h3 = f(c1, Afields3)

Save Afields1'

Do all checks

Save Afields2'

Save Afields3'

Chain length: 4
h1 = c3

h4 = c0

Figure 5.5: Timing diagram with no modi�cations

5.5.2 Faking Integrity
In order for M to fool A and B into thinking that packets were not modified, it would have to
overwrite the entire hash chain while ensuring that the HashCash property still holds. All
by the time the full chain is sent, which should be very difficult. Also, if M adds a bunch
of delay to the final packet of a chain, we should be able to detect that.

5.5.3 Pros
• A good combination of the strengths of HashCash (raising the bar computationally)

and reverse hash chains (making mode detection difficult)

5.5.4 Cons
• Could only be used in a diagnostic connection

5.5.5 Thoughts and Status
This variant is worth continuing to explore. It gives all the same benefits of the reverse hash
chain method with the added computational burden from the HashCashes. It can basically
be viewed as an add-on for the reverse hash chains. Perhaps a stronger assurance mode for
tougher middleboxes.

Coding the HashCash pool will be difficult if a CPU must precompute them in spare cycles.
Without precomputation, it will probably be unusable for anything other than a diagnostic
connection.

60



5.6 Variant 10: AppSalt
Uses application data in the integrity hashes to make them hard to modify without affecting
the user experience.

Throughout Connection: Yes
Diagnostic Mode: No
Fields Used: ISN, IPID
Raises Bar on M: Yes. M would have to be a terminating proxy and cache

lots of packets.

5.6.1 Detailed Description
This variant builds on the opportunistic approach from Section 4.4 and protects the SYN
integrity value with future application-layer content from a data packet yet to be sent. This
ephemeral secret is difficult for a middlebox to reliably determine a priori. As before, the
integrity value is encoded in the ISN of the SYN, but now the receiving end host, as well
as any middleboxes, must know the contents of future application data in order to interpret
the integrity.

For the ephemeral application-layer secret, the first data packet need not be a full MSS, e.g.,
in the case of an HTTP GET request. We therefore examined the initial application payload
of each flow in a full day of border traffic from our organization. Among application
data payloads of 6,742,466 flows, we find 5,377,440 (≈ 80%) where the first 40 bytes are
unique. The 99th percentile of the distribution is that payloads appear twice, implying that
40 bytes of ephemeral secret is a reasonable lower-bound to prevent trivial guessing.

To illustrate the complete HICCUPS operation, we present a scenario where a web client
connects to a server by performing the 3WHS and then issues an HTTP GET request for
a specific resource. Neither the remote server nor any in-path middleboxes can reliably
ascertain what will be the application data at the time the SYN is observed. Only the
web client knows with certainty the initial HTTP application data that will be sent. In this
example, the application layer data might contain such items as the GET URL, the host
parameter, and the user agent string as shown in the example of Figure 5.6.

5.6.2 Faking Integrity
Since the application data needed to properly decode the SYN’s integrity is not available
to M at the time the SYN is received, it is difficult for M to check whether a connection
is HICCUPS-enabled. Encoding integrity with future application data also increases the
difficulty for a middlebox to tamper with a packet and evade detection. M cannot simply
recalculate a new valid integrity. The ephemeral secret forces M to process the SYN packet
before it can observe the application data. Otherwise, M has two remaining options to
modify the packet headers and evade detection: make a best guess of the application data,
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A B

saltA hA

ipid seq ack

saltB hB

ipid seq ack

A+1

SYN

SYN-ACK

ACK

saltA ← rand()
hA = enc(DATA, f(SYN, saltA))

cache hA

saltB ← rand()
hB = f(SYN-ACK, saltB)

do_checks()

GET /test/
Host: www.example.org
User-Agent: Mozilla/5.0...

hA' = dec(DATA, hA)
do_checks()

DATA

DATA:

Figure 5.6: Timing diagram with no modi�cations

or perform a man-in-the-middle (MITM) attack and fake a SYN-ACK response, inducing
A to expose the application data secret.

M may attempt to guess the unseen application data, e.g., by using a profile of prior connec-
tions from A to B. However, M is unlikely to guess correctly for every connection between
all pairs of hosts. If M guesses incorrectly, integrity values will not validate and the manip-
ulations can be detected. Of course, M could change the actual application data to match its
guess, but doing so fundamentally alters the application-layer behavior of the connection.

In order to know the application data with certainty, M must act as a TCP-terminating
proxy, a behavior that is detectable based on timing and by issuing connections to known
unreachable hosts as shown in [4]. This MITM behavior, whereby M falsely claims to be B,
spoofs the SYN-ACK and intercepts the resulting traffic, permits M to rebuild the original
SYN with an updated integrity value and forward it along to the true destination. The non-
spoofed SYN-ACK from B would have to be intercepted and the cached data from A could
be sent. This situation is clearly more complicated than just the translating of sequence
numbers; the middlebox has broken a connection and now has to marshal data between
them, in addition to sending spoofed packets, buffering data, and rebuilding integrity val-
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ues. Further, the middlebox must do this for all connections, potentially representing many
endpoints.

5.6.3 Pros
• Very strong against middleboxes intending to perform undetected tampering
• Ties attempted evasion by a middlebox to the user experience

5.6.4 Cons
• Further blurs lines between layers. Forces us to understand application data at the

TCP layer.
• Need to modify many applications to provide this data to the TCP stack at connection

time

5.6.5 Thoughts and Status
We took the step of verifying that the system call to connect() initiates the 3WHS. The
SYN is sent before any calls to send() are ever made.

Our current implementation of HICCUPS uses this variant as its protection scheme. We had
to modify the kernel’s socket API so that an application could specially request protection
via AppSalt if it desired it. For more details, see Section 6.3.
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CHAPTER 6:
Implementation

We have implemented an integrity transmission mechanism along with an optional integrity
protection scheme in a kernel patch for Linux version 3.9.4 [56]. For transmission of
integrity, we utilize design elements from the Opportunistic HICCUPS concept described
in Section 4.4 and the Hash Rainbow concept described in Section 4.8. To add the optional
layer of protection for the integrity transmission, we also implement the AppSalt concept
described in Section 5.6.

6.1 Implementation overview
Our implementation of these design elements, which we collectively refer to as HICCUPS,
leverages the TCP/IP stack of the Linux kernel to augment outgoing packets and perform
special processing of incoming packets to perform the necessary integrity checks. Once
a kernel has had our patch applied, it can perform HICCUPS integrity checks with other
HICCUPS-capable hosts around the Internet and process the results within TCP.

In order to give an idea of the complexity and breadth of our kernel patch implementation,
we calculated the number of lines of code used and found that it took just over 700 lines
to implement the core integrity transmission and protection protocols. Table 6.1 shows the
complete breakdown of the lines in our patch by their associated functionality.

Blank lines Comments Code
Core HICCUPS 111 245 560

Debugging 52 72 299
Faking options 4 6 43

AppSalt 33 41 164
Murmur3 51 92 151

Total 251 456 1217

Table 6.1: Lines of code broken down by functionality

Core HICCUPS refers to the integrity transmission and validation components. AppSalt is
the protection mechanism. In our implementation, we chose to leverage both the CRC32
and Murmur3 [57] hashes within HICCUPS. Since Murmur3 was not already in Linux, we
had to add it, which took about 150 lines of code. The options faking code is only used by
our evaluation measurements to imitate the Multipath TCP MPCAPABLE [13] response in
SYN-ACK packets.
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6.2 HICCUPS Details
In order to implement HICCUPS in the kernel, we add hooks at key places where SYN
and SYN-ACK packets are processed on both the incoming and outgoing paths. Table 6.2
lists our HICCUPS functions and hook placements corresponding to each type of SYN
or SYN-ACK related event. Locations for the hooks were chosen through a combination
of code analysis, debugging, and trial and error. The hook locations describe files under
the net/ipv4 source tree within the kernel and the line numbers represent the locations
within each file before any editing was done.

Event HICCUPS function Hook location
SYN sent tcp_hiccups_syn_out ip_output.c:403

tcp_hiccups_after_syn_out tcp_output.c:3029
SYN received tcp_hiccups_syn_in tcp_ipv4.c:1515
SYN-ACK sent tcp_hiccups_synack_out ip_output.c:161

tcp_hiccups_after_synack_out tcp_ipv4.c:863,1652
SYN-ACK received tcp_hiccups_synack_in tcp_input.c:5724

Table 6.2: HICCUPS functions and hooks, by TCP event

A major challenge working within the kernel is that sequence numbers and IPID values
are selected before much of the final packet is built. In particular, since the TCP initial
sequence number does not originally depend on the full packet or any information at the IP
layer, it can be calculated early on. However, with HICCUPS, we change this design and
make the sequence number a function of other fields in the packet header. Therefore, we
must postpone calculation of the ISN until the full packet has been created by the kernel and
we know the values of all fields we wish to cover. This forces us to go back into the socket
structures and update the originally stored sequence number with our new one calculated
by HICCUPS.

The two “after” hooks listed in Table 6.2 are also due to the challenge of the kernel needing
and using the sequence number before we have the full packet available for hashing. At the
point in the code flow which the full packet is available, we are often working with clones
of the socket buffer and need to wait until we come back up the transport layer to update
the rest of the sequence number fields.

6.3 Appsalt
AppSalt is an optional layer of protection that requires the kernel know the initial byte range
of data that an application wishes to send in a connection before the TCP 3-way handshake
is initiated. This situation is incompatible with the traditional ordering of socket calls as
shown in Listing 6.1. In that sequence of calls, the TCP 3-way handshake will initiate on
the connect() call and the SYN must be sent before the kernel is even presented with
any application data.
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Listing 6.1: Old socket call order

s = s o c k e t ( . . . ) ;
c o n n e c t ( s , add r ) ;
send ( s , msg ) ;

Listing 6.2: New socket call order

s = s o c k e t ( . . . ) ;
s e n d t o ( s , msg ,

MSG_HICCUPS , add r ) ;

In order to implement the AppSalt functionality, we made a small modification to the
kernel’s socket API. Deriving inspiration from the socket API changes made by the TCP
Fast Open extension [58], we added a new flag, MSG_HICCUPS, that can be used by the
sendto() call. Listing 6.2 shows the new sequence of calls that would need to be used
by an application requesting AppSalt protection.

We believe that this method of implementation has the best combination of deployability
and compatibility properties. An alternative method to implementing AppSalt would be to
modify the logic behind the connect() call directly so that the handshake is not initiated
until the first send() call. This would have the positive property of automatically en-
gaging AppSalt protection for all applications without having to update them, but concerns
about compatibility and decreased acceptance by the community led us to opt for the more
gradual approach.

There are upsides to MSG_HICCUPS flag approach. For one, since it is the same method
used by TCP Fast Open with just a different flag name, it will be trivial for applications
already making use of TCP Fast Open to also use AppSalt protection with HICCUPS.
The application need only OR the MSG_HICCUPS flag with the TCP Fast Open flag in its
sendto() calls. Many applications have already begun upgrading to include use of TCP
Fast Open, including the widely used Google Chrome browser [59].
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CHAPTER 7:
Evaluation

We first performed a series of experiments to properly vet our implementation and en-
sure that both the methodology and coding were correct. First, we deployed HICCUPS-
enabled hosts to a virtualized testing environment for initial validation purposes. After
ensuring that HICCUPS could detect modifications in a controlled environment where he
have ground truth, we deployed implementations to a global Internet networking testbed,
PlanetLab [60].

7.1 Controlled Environment
Using virtual hosts running inside Virtualbox, we model a situation where two end systems
are connected with a third system along the path between them. The layout is shown in
Figure 7.1. Each of the two end systems are running the HICCUPS kernel and the third
system acts as a transparent middlebox in their communications.

Figure 7.1: Diagram of Virtualbox testing

In order to imitate changes that a middlebox could make, we use an iptables rule to redi-
rect each forwarded packet up to user space via the nfqueue-bindings software [61]. A
Scapy [62] script written in Python receives the packet, modifies it, recalculates the net-
work checksum, and then sends it back out on to its destination. We have written the Scapy
script so that it can make an array of modifications to packets, all of which are shown in
Table 7.1. Each of these is a possible modification we expect a middlebox could make to a
passing packet.
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Field modified Description of modification
IP ECN codepoint If an ECN-capable codepoint is set, zero it out.

If a congestion-experienced codepoint is set, set one of the
bits to zero.

IP DF flag Complement the Don’t Fragment bit
TCP ECN flags Set both flag bits to zero
TCP ECN flags Complement each ECN flag bit
IP ID Set value to zero
TCP MSS If no MSS is set, set a random one between 1 and 1460 bytes

If an MSS is set, lower it to a specified value
Reserved fields Turn reserved bits in TCP and IP headers to 1
TCP Receive Window Offset the receive window by a specified value
All All of the above modifications enabled at once

Table 7.1: List of modi�cations made by middlebox simulator

Using the middlebox script, we tested the effectiveness of the HICCUPS kernel to detect
each of the supported modifications. In each case, the two end hosts were able to detect
that a change took place when there were in fact changes made, and the hosts did not detect
any changes when the Scapy script was disabled.

For the purposes of an example to show how HICCUPS is used, we will more closely
examine the scenario of a blocked ECN negotiation. In this scenario, both hosts A and B of
Figure 7.1 are ECN-enabled and request it on their connections. The middlebox script is
programmed to set both ECN flags in the TCP header to zero on any packets it sees. As we
will see later in Section 7.4.3, this is a fairly common modification on the actual Internet.
The modification has the effect of keeping both end hosts from using ECN, even when they
both support it.

Working from the point of view of Host A, we notice there is a problem when the SYN-
ACK that returns from an ECN-capable host has ECN disabled. Running a packet capture
during a connection attempt to Host B, we see the situation as shown in Figure 7.2. The
SYN leaves with the ECE and CWR TCP flags set (to indicate a desire to enable ECN for
this connection), but the SYN-ACK returns with neither flag set.

We can confirm that it is a middlebox that is disabling our ECN flags using HICCUPS.
Shown in Figure 7.3 is the output from a HICCUPS test client. First, HICCUPS probes are
sent from Host A to B which reveals that a modification is occurring on the SYN, but not
the SYN-ACK. Specifically, that modification is to one of the bits covered by the HECN
probe type. Second, we disable ECN on Host A and try our probes again. Now we see that
all of the probes passed the integrity checks, even the ECN probe which previously failed.
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Figure 7.2: Screenshot of packet capture from Host A

This is because the middlebox script we have running only changes ones to zeros in the
ECN flags. With ECN off, there is no modification to be made.

Figure 7.3: Screenshot of HICCUPS test client probing from Host A to B

7.2 PlanetLab Experimental Description
After successful confirmation that two HICCUPS-enabled hosts could correctly detect
packet modifications on their path, we expanded our experimental scope to the Internet.
We use PlanetLab [60], a global research overlay network that provides researchers with
user-level access to a set of Internet-connected hosts from around the world. Researchers
from participating organizations can upload and execute their own programs on the hosts,
but cannot modify the kernel. Because of this limitation, we created a userspace raw socket
tool that mimics the client functionality of the kernel patch described in Chapter 6.
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During the experiment, we tested one node from each unique PlanetLab site, e.g., if UC
Berkeley has ten nodes we only test from one of the ten, so as to not be biased towards
sites with a large number of nodes. After filtering for these site-unique nodes and leaving
out nodes that did not come up, we were able to gain access to 199 different nodes to act as
sources.

For each PlanetLab node that we test, we send HICCUPS probes out to three ports (22, 80,
and 443) on each of the twelve destination test servers listed in Table 7.2 (except hiccups-
icsi, as port 443 was not open inbound).

DNS name Network Physical location Ports
hiccups-mit.cmand.org MIT Massachusetts 22, 80, 443
hiccups-ncr.cmand.org Virginia Tech Virginia 22, 80, 443
hiccups-icsi.cmand.org ICSI California 22, 80
hiccups-mry.cmand.org Comcast Business California 22, 80, 443

hiccups-ec2-nva.cmand.org Amazon EC2 Virginia 22, 80, 443
hiccups-ec2-ore.cmand.org Amazon EC2 Oregon 22, 80, 443
hiccups-ec2-cal.cmand.org Amazon EC2 California 22, 80, 443
hiccups-ec2-ire.cmand.org Amazon EC2 Ireland 22, 80, 443
hiccups-ec2-jp.cmand.org Amazon EC2 Japan 22, 80, 443
hiccups-ec2-sng.cmand.org Amazon EC2 Singapore 22, 80, 443
hiccups-ec2-au.cmand.org Amazon EC2 Australia 22, 80, 443
hiccups-ec2-brz.cmand.org Amazon EC2 Brazil 22, 80, 443

Table 7.2: PlanetLab nodes connected to each of these servers

From each PlanetLab node to each [server:port] combination, we test all eight probe types
a total of five times: with ECN on and off, and with three different values of MSS. The
parameters for the five trials are shown in Table 7.3.

ECN enabled MSS enabled MSS value
Trial #1
Trial #2 X
Trial #3 X 1460
Trial #4 X 480
Trial #5 X 1600

Table 7.3: Experimental parameters for the �ve trials

To summarize, there were:

• 199 PlanetLab nodes (sources)
• 35 [server:port] combos (destinations)
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– 12 servers
– 3 destination ports (minus 443 on hiccups-icsi)

• 8 probe types (HFULL, HECN, etc.)
• 5 probing parameter sets (Table 7.3)

This led to a total of 278,600 probes in the resulting dataset.

7.2.1 PlanetLab node breakdown
In order to further understand the makeup of our set of PlanetLab nodes, we geolocated all
199 nodes using the MaxMind GeoLite country database [63]. The results of that break-
down are shown in Table 7.4 by country and in Table 7.5 by continent. The vast majority
(almost 80%) of the nodes reside in either the US or Europe.

# of nodes Countries
70 United States
13 Germany
11 France
9 Italy
7 ea. Spain and Poland
6 ea. Portugal and the UK
5 ea. Canada, China, Sweden, New Zealand, and Greece
4 ea. Israel and Brazil
3 ea. South Korea, Japan, and Switzerland
2 ea. Turkey, Ireland, Argentina, Belgium, Hong Kong, the Netherlands, Finland, and Hungary
1 ea. Czech Republic, Norway, Thailand, Ecuador, Australia, Singapore, Jordan, Denmark,

Romania, Austria, Taiwan, and Cyprus

Table 7.4: Breakdown of PlanetLab nodes by country

Continent # of nodes Percent
Europe 88 44.2%

North America 75 37.7%
Asia 23 11.6%

South America 7 3.5%
Oceania 6 3.0%

Table 7.5: Breakdown of PlanetLab nodes by continent

7.3 Dataset Statistics
We begin by examining the results at a higher level. For the implementation of HICCUPS
used during this experiment, there were four possible results from each probe: PASS,
NOMATCH, ONEWAY, or TIMEOUT. PASS means that header integrity was upheld on both
the forward and reverse paths between the two hosts. NOMATCH means that the SYN-ACK
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integrity failed, but tells us nothing of the SYN. ONEWAY means that the SYN integrity
failed, but the SYN-ACK was upheld. TIMEOUT means that no SYN-ACK was received
before the timeout expired.

The result type breakdown for the 278,600 probes in the dataset is shown in Table 7.6.
The table does not break the results out by trial parameters. The largest amount of non-
passing probes occurred for the HFULL probe type, as expected, since it covers all fields.
The second most non-passing type was HONLYOPT, which covers only the IP and TCP
options. This indicates where the largest proportion of modifications occurred.

PASS NOMATCH ONEWAY TIMEOUT
HFULL 27769 5822 932 302

HNOOPT 29109 4543 885 288
HONLYOPT 28445 5788 297 295

HECN 29210 4513 795 307
HRCVWIN 29924 4419 175 307

HSAFE 29859 4434 232 300
HFLAGS 29922 4429 175 299
HNULL 29920 4429 175 301

Total 234158 38377 3666 2399

Table 7.6: Probing results, totaled by probe type

7.3.1 Perfect Hosts
There were 59 hosts out of 199 where every single outgoing probe passed HICCUPS
checks, or 29.65% of all nodes. We call these perfect hosts since no modifications were
made to any of its packets. The sizable number of perfect hosts helps ensure us that there
were no middleboxes directly in front of any of our servers. If there were, we would not
have any perfect hosts. The distribution of perfect hosts by country is listed in Table 7.7.

# of perfect hosts Countries
32 United States
3 ea. Brazil, Poland, Sweden, and New Zealand
2 ea. Canada, Republic of Korea, Finland, and Japan
1 ea. Hong Kong, France, Australia, Thailand, Norway, Taiwan, and Denmark

Table 7.7: Perfect host breakdown by country

7.3.2 Timeouts
PlanetLab is a relatively unstable network and each host is shared with many other users.
As such, 0.9% of all probes timed out and many of the hosts experienced at least one
timeout. 98 of our nodes experienced at least 1 probe timeout at some point, that is 49.25%
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of all nodes. However, the vast majority of the timeouts were limited to a small set of the
nodes: 4 hosts were responsible for 80.2% of the timeouts.

7.3.3 CDF
Figure 7.4 shows a CDF of the fraction of probes that passed HICCUPS checks for each
cumulative fraction of test nodes. The ranges marked as “interesting” and “ISN translation”
make up the fraction of nodes that experienced some amount of in-network changes to their
packets for at least one of the probes they sent. This range consists of about 70% of all
PlanetLab nodes we tested.

Figure 7.4: Cumulative distribution of passing probes

7.4 Detected Modifications
7.4.1 ISN translation
Translation of the initial sequence number (ISN) will cause the HNULL probe to fail. Since
it does not cover any additional fields, it is basically a check of just the integrity carrying
fields, the ISN and IPID. About 13.1% of nodes failed HNULL probes, indicating the
presence of a middlebox performing translation in front of that node. Here are the exact
counts:
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ISN or IPID definitely translated: 26
ISN and IPID safe from modifications: 170

Mostly safe, but had path variances: 3

These were the three nodes with path variances: 210.75.225.60, 190.227.163.141, 162.105.205.22.
Table 7.8 shows the set of hosts experiencing ISN translation broken down by country.

Hosts w/ ISN translation Countries
8 United States
2 ea. France and Sweden
1 ea. Turkey, UK, Israel, Italy, Portugal, Singapore, Poland,

Germany, Spain, Switzerland, Japan, New Zealand,
Cyprus, and Ecuador

Table 7.8: ISN translation breakdown by country

7.4.2 TCP Maximum Segment Size (MSS)
Note that in Table 7.9 that there are a large number of NOMATCH probe results no matter
the value of MSS that we request. Due to the way our probe coverages are designed, these
failed matches may be due to any other modification made to the IP or TCP options. We
did not have granularity down to specific options such as MSS in this dataset.

34 hosts never once passed an HONLYOPT probe for any of the MSS values we tried. This
is 17.1% of all nodes we tested.

MSS Value PASS NOMATCH ONEWAY TIMEOUT
None 5676 1163 65 61

480 5712 1146 35 72
1460 5724 1154 35 52
1600 5649 1160 99 57
Total 22761 4623 234 242

Table 7.9: Overall totals for various requested values of MSS
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7.4.3 ECN
When we enabled ECN negotiation from the PlanetLab hosts, it resulted in an increase in
each non-PASS result category:

PASS NOMATCH ONEWAY TIMEOUT
HECN with ECN disabled 5994 881 34 56
HECN with ECN enabled 5267 979 657 62

Note the large jump in the ONEWAY results (SYN integrity failed, but SYN-ACK unmod-
ified). Our inference here is that one or both of the ECE or CWR bits in the TCP header
were flipped back to zero. ECN fails to negotiate so the SYN-ACK does not carry the ECN
bits and is left alone. There is also an unexplained jump of about 100 in the number of
NOMATCH results. Further analysis should be done to determine the cause of these.

Approximately 13 (6.5%) hosts were affected on all paths by enabling ECN:

ECN off ECN on
Hosts with majority of HECN probes passing 172 159

Figure 7.5 shows that about 60 more nodes were affected on some fraction of the paths
between them and the test servers.

Figure 7.5: Probing results of HECN probe, displayed by host
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CHAPTER 8:
Conclusions and Future Work

Debugging IP network problems end-to-end is a difficult, often manual process exacerbated
by the presence of currently opaque middleboxes. In this report, we outline designs for
integrity detection mechanisms and integrate those concepts into our implementation, TCP
HICCUPS. HICCUPS is a backward-compatible and incrementally deployable extension
to TCP that reveals packet header manipulation to both sides of a TCP, thereby facilitating
the efforts of endpoints to cooperate with the middleboxes along the potentially asymmetric
paths between them.

We evaluate our real-world Linux kernel implementation of HICCUPS on a distributed
and diverse set of endpoints and find that HICCUPS discovers a wide variety of (asym-
metric) behaviors across thousands of Internet paths. Instances of packet header manip-
ulations we detect include modifications to the TCP sequence number, IPID, ECN, and
maximum segment size (MSS). Crucially, packet modification behaviors are discovered by
the connection-initiating TCP initiating without other coordination or cooperation with the
remote endpoint. We believe that HICCUPS shows the potential to help facilitate the safe
deployment of new and experimental options, e.g., ECN and Multipath TCP.

8.1 Future Work
In future work, we wish to utilize the evaluation results to further refine the HICCUPS
protocol. In particular, the high presence of sequence number translation disrupted the
Opportunistic HICCUPS approach on about 13% of the paths we tested. Spreading the
hashes across multiple fields within the header will reduce that value and allow for tests to
complete across a greater number of paths. We also wish to devise an efficient search and
error correction strategy in order to reduce the number of RTTs required for complete path
inference. We plan more extensive performance characterization of selectively enabling
ECN and other extensions across real paths whose behavior is inferred by HICCUPS.

We further plan to make our implementations available on our website [64] and invite the
community to make use of both the kernel and userspace versions of our solution. More
widespread use would help facilitate greater variety in our measurements and further help
to refine the protocol. We also hope to utilize comparisons of packet captures and the
results from other packet header modification detection utilities such as Tracebox in order
to establish ground truths for accuracy evaluation and to do performance comparisons.

We envision several benefits of future widespread HICCUPS deployment beyond improv-
ing end-user application performance. In addition to providing invaluable data to re-
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searchers and policy makers, implementing HICCUPS in deployed operating systems would
enable a new diagnostic capability for network operators. For instance, an operator could
determine not only reachability, but also discover any packet modification on both the for-
ward and reverse data plane.
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